Abstract

We present a method for simultaneously measuring the thickness and the group refractive index of a specimen using self-referenced spectral-domain fiber-based interferometry. By removing the scanning part and using the fiber-based configuration, the system complexity and stability could be significantly improved. To minimize the system drift, we utilized the signals originated from the fiber ends of both arms. Implementing in a self-referenced configuration, we could improve the measurement accuracy down to a decimal place. Experimental measurements were made with a 1.555mm thick fused silica plate. At 814nm the thickness was measured as 1.5546±0.0002mm, and at the same time, the group index was obtained as 1.4627±0.0002.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Fukano and I. Yamaguchi, “Simultaneous measurement of thickness and refractive indices of multiple layers by a low-coherence confocal interference microscope,” Opt. Lett. 21, 1942-1944 (1996).
    [CrossRef] [PubMed]
  2. H. Maruyama, S. Inoue, T. Mitsuyama, M. Ohmi, and M. Haruna, “Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness,” Appl. Opt. 41, 1315-1322 (2002).
    [CrossRef] [PubMed]
  3. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258-2260 (1995).
    [CrossRef] [PubMed]
  4. S. A. Alexandrov, A. V. Zvyagin, K. K. M. B. D. Silva, and D. D. Sampson, “Bifocal optical coherence refractometry of turbid media,” Opt. Lett. 28, 117-119 (2003).
    [CrossRef] [PubMed]
  5. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Opt. Lett. 32, 385-387 (2007).
    [CrossRef] [PubMed]
  6. M. Haruna, M. Ohmi, T. Mitsuyama, H. Tajiri, H. Maruyama, and M. Hashimoto, “Simultaneous measurement of the phase index and group indices and the thickness of transparent plates by low-coherence interferometry,” Opt. Lett. 23, 966-968 (1998).
    [CrossRef]
  7. T. Fukano and I. Yamaguchi, “Separation of measurement of the refractive index and the geometrical thickness by use of a wavelength-scanning interferometer with a confocal microscope,” Appl. Opt. 38, 4065-4073 (1999).
    [CrossRef]
  8. D. F. Murphy and D. A. Flavin, “Dispersion-insensitive measurement of thickness and group index by low-coherence interferometry,” Appl. Opt. 39, 4607-4615 (2000).
    [CrossRef]
  9. M. Ohmi, H. Nishi, T. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531-1535 (2004).
    [CrossRef]
  10. S. Kim, J. Na, M. J. Kim, and B. H. Lee, “Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics,” Opt. Express 16, 5516-5526 (2008).
    [CrossRef] [PubMed]
  11. G. Häusler and M. W. Lindner, “Coherence radar and spectral radar--new tools for dermatological diagnosis,” J Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  12. W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 105-107(1992).
    [CrossRef]
  13. J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications (Prentice-Hall, 1996).
  14. http://www.cvilaser.com/Common/PDFs/Dispersion_Equations.pdf.
  15. W. J. Choi, J. Na, S. Y. Ryu, and B. H. Lee, “Realization of 3-D topographic and tomographic images with ultrahigh-resolution full-field optical coherence tomography,” J. Opt. Soc. Korea 11, 18-25 (2007).
    [CrossRef]
  16. J. Na, W. J. Choi, S. Y. Ryu, E. S. Choi, and B. H. Lee, “Thickness and index measurements of a transparent specimen by full-field optical coherence microscopy,” Proc. SPIE 7184, 74841B (2009).

2009 (1)

J. Na, W. J. Choi, S. Y. Ryu, E. S. Choi, and B. H. Lee, “Thickness and index measurements of a transparent specimen by full-field optical coherence microscopy,” Proc. SPIE 7184, 74841B (2009).

2008 (1)

2007 (2)

2004 (1)

M. Ohmi, H. Nishi, T. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531-1535 (2004).
[CrossRef]

2003 (1)

2002 (1)

2000 (1)

1999 (1)

1998 (2)

1996 (1)

1995 (1)

1992 (1)

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 105-107(1992).
[CrossRef]

Adie, S. G.

Alexandrov, S. A.

Armstrong, J. J.

Boppart, S. A.

Bouma, B. E.

Brezinski, M. E.

Choi, E. S.

J. Na, W. J. Choi, S. Y. Ryu, E. S. Choi, and B. H. Lee, “Thickness and index measurements of a transparent specimen by full-field optical coherence microscopy,” Proc. SPIE 7184, 74841B (2009).

Choi, W. J.

J. Na, W. J. Choi, S. Y. Ryu, E. S. Choi, and B. H. Lee, “Thickness and index measurements of a transparent specimen by full-field optical coherence microscopy,” Proc. SPIE 7184, 74841B (2009).

W. J. Choi, J. Na, S. Y. Ryu, and B. H. Lee, “Realization of 3-D topographic and tomographic images with ultrahigh-resolution full-field optical coherence tomography,” J. Opt. Soc. Korea 11, 18-25 (2007).
[CrossRef]

Flavin, D. A.

Fujimoto, J. G.

Fukano, T.

Gray, D. F.

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 105-107(1992).
[CrossRef]

Haruna, M.

Hashimoto, M.

Häusler, G.

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar--new tools for dermatological diagnosis,” J Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Hee, M. R.

Inoue, S.

Kim, M. J.

Kim, S.

Konishi, T.

M. Ohmi, H. Nishi, T. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531-1535 (2004).
[CrossRef]

Lee, B. H.

Leigh, M. S.

Lindner, M. W.

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar--new tools for dermatological diagnosis,” J Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Manolakis, D. G.

J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications (Prentice-Hall, 1996).

Maruyama, H.

Mitsuyama, T.

Murphy, D. F.

Na, J.

Nguyen, F. T.

Nishi, H.

M. Ohmi, H. Nishi, T. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531-1535 (2004).
[CrossRef]

Ohmi, M.

Paduch, A.

Proakis, J. G.

J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications (Prentice-Hall, 1996).

Ryu, S. Y.

J. Na, W. J. Choi, S. Y. Ryu, E. S. Choi, and B. H. Lee, “Thickness and index measurements of a transparent specimen by full-field optical coherence microscopy,” Proc. SPIE 7184, 74841B (2009).

W. J. Choi, J. Na, S. Y. Ryu, and B. H. Lee, “Realization of 3-D topographic and tomographic images with ultrahigh-resolution full-field optical coherence tomography,” J. Opt. Soc. Korea 11, 18-25 (2007).
[CrossRef]

Sampson, D. D.

Silva, K. K. M. B. D.

Sorin, W. V.

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 105-107(1992).
[CrossRef]

Southern, J. F.

Tajiri, H.

Tearney, G. J.

Yamada, Y.

M. Ohmi, H. Nishi, T. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531-1535 (2004).
[CrossRef]

Yamaguchi, I.

Zvyagin, A. V.

Zysk, A. M.

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (1)

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 105-107(1992).
[CrossRef]

J Biomed. Opt. (1)

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar--new tools for dermatological diagnosis,” J Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

J. Opt. Soc. Korea (1)

Meas. Sci. Technol. (1)

M. Ohmi, H. Nishi, T. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531-1535 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Proc. SPIE (1)

J. Na, W. J. Choi, S. Y. Ryu, E. S. Choi, and B. H. Lee, “Thickness and index measurements of a transparent specimen by full-field optical coherence microscopy,” Proc. SPIE 7184, 74841B (2009).

Other (2)

J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications (Prentice-Hall, 1996).

http://www.cvilaser.com/Common/PDFs/Dispersion_Equations.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental setup. C, collimator; S, sample.

Fig. 2
Fig. 2

Simple illustration (sample arm only) of the measurement sequence: measurements (a) without a specimen and (b) with a specimen. The right-hand figure illustrates the inverse Fourier transform of the interference spectrum obtained with the scheme in the left figure. Δ is the distance between the left two peaks, and Δ is the distance between the right two peaks (one is the dotted arrow). C, collimator; OBJ, objective lens; S, sample.

Fig. 3
Fig. 3

Spectra measured (a) without and (b) with a specimen and their inverse Fourier transformed signal (c) for spectrum (a) and the signal (d) for spectrum (b). The measurements were made with a 1.555 mm thick fused silica plate at a wavelength of 1310 nm . FR , shifted FR; A, autocorrelation signal.

Fig. 4
Fig. 4

Spectra measured with (a) closing both the sample and the reference arms and (b) opening the sample arm while closing the reference arm of the interferometer. (c) Inverse Fourier transformed signal of (a) and (d) transformed signal of (b). SA, sample arm; RA, reference arm; A, autocorrelation signal.

Fig. 5
Fig. 5

Coplaced inverse Fourier transformed signals of Fig. 3. The background signals obtained with Fig. 4 measurements were subtracted. FR , shifted FR.

Fig. 6
Fig. 6

Variation of the group refractive index measurements made without utilizing the proposed self-referencing. Ten measurements were made successively at three wavelengths.

Fig. 7
Fig. 7

Variation of the group refractive index measurements made with utilizing the proposed self-referencing. We can see that the variation becomes highly reduced.

Tables (1)

Tables Icon

Table 1 Refractive Group Index and the Geometric Thickness of a Fused Silica Plate Measured at Three Wavelengths, with the Proposed Scheme, and Their Reference Values

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

t = Δ Δ ,
n g = Δ / t .
Δ = FR FR .
Δ = [ FR ( FE FE ) sample ] [ FR ( FE FE ) initial ] .
Δ z = c 2 = 2 ln 2 π ( λ 0 2 Δ λ ) ,
z max = 1 4 n ( λ 0 2 δ λ ) ,

Metrics