Abstract

We present simple whole blood reflectance analyses in the range 500–900nm, using intact whole blood to simultaneously quantify hematocrit and oxygen saturation from a single spectral reading. We applied these results for the development of an intravascular catheter-based reflectance sensing system to detect and remove contrast media injected during angiography so as to reduce the risk of complications associated with the injected contrast media. We further tested the practicality of the optical detection of angiographic contrast media in a pilot animal study in vivo. We successfully demonstrated the feasibility of real-time in vivo contrast detection and removal during angiography. Our simple method for the detection and removal of angiographic contrast media will facilitate the development of intravascular optical sensing systems.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Vo-Dinh, Biomedical Photonics Handbook, 1st ed. (CRC Press, 2003).
    [CrossRef]
  2. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007).
  3. R. W. Katzberg, “Contrast-induced nephrotoxicity: clinical landscape,” Kidney Int. 69, S3-S7 (2006).
    [CrossRef]
  4. N. H. Strickland, M. W. Rampling, P. Dawson, and G. Martin, “Contrast media-induced effects on blood rheology and their importance in angiography,” Clin. Radiol. 45, 240-242 (1992).
    [CrossRef] [PubMed]
  5. W. H. Reinhart, B. Pleisch, L. G. Harris, and M. Lutolf, “Influence of contrast media (iopromide, ioxaglate, gadolinium-DOTA) on blood viscosity, erythrocyte morphology and platelet function,” Clin. Hemorheol. Microcirc. 32, 227-239 (2005).
    [PubMed]
  6. K. Katsanos, A. Moutzouri, D. Karnabatidis, D. Siablis, and G. Athanassiou, “Influence of contrast media on red blood cell deformability,” Clin. Hemorheol. Microcirc. 39, 87-91 (2008).
    [PubMed]
  7. P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O'Neill, “Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality,” Am. J. Med. 103, 368-375 (1997).
    [CrossRef] [PubMed]
  8. G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
    [CrossRef]
  9. A. L. Bartorelli and G. Marenzi, “Contrast-induced nephropathy,” J. Interv. Cardiol. 21, 74-85 (2008).
    [CrossRef]
  10. M. Tepel, P. Aspelin, and N. Lameire, “Contrast-induced nephropathy: a clinical and evidence-based approach,” Circulation 113, 1799-1806 (2006).
    [CrossRef] [PubMed]
  11. A. M. Kelly, B. Dwamena, P. Cronin, S. J. Bernstein, and R. C. Carlos, “Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy,” Ann. Intern. Med. 148, 284-294 (2008).
    [PubMed]
  12. I. Michishita and Z. Fujii, “A novel contrast removal system from the coronary sinus using an adsorbing column during coronary angiography in a porcine model,” J. Am. Coll. Cardiol. 47, 1866-1870 (2006).
    [CrossRef] [PubMed]
  13. M.-R. Movahed, J. Wong, and S. Molloi, “Removal of iodine contrast from coronary sinus in swine during coronary angiography,” J. Am. Coll. Cardiol. 47, 465-467 (2006).
    [CrossRef] [PubMed]
  14. H. D. Danenberg, C. Lotan, B. Varshitski, S. Rosenheck, and A. T. Weiss, “Removal of contrast medium from the coronary sinus during coronary angiography: feasibility of a simple and available technique for the prevention of nephropathy,” Cardiovasc. Revasc. Med. 9, 9-13 (2008).
    [CrossRef] [PubMed]
  15. Y. Enson, W. A. Briscoe, M. L. Polanyi, and A. Cournand, “In vivo studies with an intravascular and intracardiac reflection oximeter,” J. Appl. Physiol. 17, 552-558 (1962).
    [PubMed]
  16. N. S. Kapany, “Fiber optics oximeter-densitometer for cardiovascular studies,” Appl. Opt. 6, 565-570 (1967).
    [CrossRef] [PubMed]
  17. F. Tremolieres, F. Lecompte, M. Sinet, A. Chirico, J. Bech, J. M. Vallois, M. C. Blayo, and J. J. Pocidalo, “In vivo measurements of oxyhaemoglobin saturation by a fiberoptic catheter,” Intensive Care Med. 2, 177-180 (1976).
    [CrossRef]
  18. M. L. Landsman, N. Knop, G. Kwant, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection oximeter,” Pfluegers Arch. Eur. J. Physiol. 373, 273-282 (1978).
    [CrossRef]
  19. M. L. Landsman, N. Knop, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection densitometer with cardiac output calculator,” Pfluegers Arch. Eur. J. Physiol. 379, 59-69 (1979).
    [CrossRef]
  20. J. Schmitt, F. Mihm, and J. Meindl, “New methods for whole blood oximetry,” Ann. Biomed. Eng. 14, 35-52 (1986).
    [CrossRef] [PubMed]
  21. S. Takatani, H. Noda, H. Takano, and T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187-198 (1988).
    [CrossRef] [PubMed]
  22. T. Kaiwa, T. Mori, T. Kijima, M. Nogawa, C. Nojiri, and S. Takatani, “Measurement of blood hematocrit inside the magnetically suspended centrifugal pump using an optical technique: application to assessment of pump flow,” Artif. Organs 23, 490-495 (1999).
    [CrossRef] [PubMed]
  23. A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6, 457-467 (2001).
    [CrossRef] [PubMed]
  24. Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. (Baltimore) 94, S26-S30 (2002).
  25. T. Yasuda, T. Saito, T. Kihara, S. Takatani, and A. Funakubo, “Development of a reflected optical fiber system for measuring oxygen saturation in an integrated artificial heart-lung system,” Artif. Organs 32, 229-234 (2008).
    [CrossRef] [PubMed]
  26. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4, 36-46(1999).
    [CrossRef]
  27. D. K. Sardar and L. B. Levy, “Optical properties of whole blood,” Lasers Med. Sci. 13, 106-111 (1998).
    [CrossRef]
  28. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
    [CrossRef] [PubMed]
  29. M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
    [CrossRef]
  30. M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12, 014024(2007).
    [CrossRef] [PubMed]
  31. R. J. Zdrojkowski and N. R. Pisharoty, “Optical transmission and reflection by blood,” IEEE Trans. Bio-Med. Eng. BME-17, 122-128 (1970).
    [CrossRef]
  32. C. C. Johnson, “Optical diffusion in blood,” IEEE Trans. Bio-Med. Eng. BME-17, 129-133 (1970).
    [CrossRef]
  33. L. Reynolds, C. Johnson, and A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters,” Appl. Opt. 15, 2059-2067 (1976).
    [CrossRef] [PubMed]
  34. J. M. Steinke and A. P. Shepherd, “Diffuse reflectance of whole blood: model for a diverging light beam,” IEEE Trans. Bio-Med. Eng. BME-34, 826-834 (1987).
    [CrossRef]
  35. J. M. Steinke and A. P. Shepherd, “Reflectance measurements of hematocrit and oxyhemoglobin saturation,” Am. J. Physiol. Heart Circ. Physiol. 253, H147-H153 (1987).
  36. J. M. Steinke and A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027-4033 (1988).2
    [CrossRef] [PubMed]
  37. G. Yoon, S. A. Prahl, and A. J. Welch, “Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media,” Appl. Opt. 28, 2250-2255 (1989).
    [CrossRef] [PubMed]
  38. A. Kienle, “Anisotropic light diffusion: an oxymoron?,” Phys. Rev. Lett. 98, 218104 (2007).
    [CrossRef] [PubMed]
  39. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).
    [CrossRef]
  40. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003).
    [CrossRef]
  41. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37, 7410-7418 (1998).
    [CrossRef]
  42. S. Mohapatra and C. Smith, “Infrared isobestic region for whole blood,” Med. Biol. Eng. Comput. 13, 929-931 (1975).
  43. J. Ling, S. Takatani, G. P. Noon, and Y. Nose, “In-vivo studies of reflectance pulse oximeter sensor,” in Physiological Imaging, Spectroscopy, and Early-Detection Diagnostic Methods (SPIE, 1993), pp. 256-262.

2008

K. Katsanos, A. Moutzouri, D. Karnabatidis, D. Siablis, and G. Athanassiou, “Influence of contrast media on red blood cell deformability,” Clin. Hemorheol. Microcirc. 39, 87-91 (2008).
[PubMed]

A. L. Bartorelli and G. Marenzi, “Contrast-induced nephropathy,” J. Interv. Cardiol. 21, 74-85 (2008).
[CrossRef]

A. M. Kelly, B. Dwamena, P. Cronin, S. J. Bernstein, and R. C. Carlos, “Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy,” Ann. Intern. Med. 148, 284-294 (2008).
[PubMed]

H. D. Danenberg, C. Lotan, B. Varshitski, S. Rosenheck, and A. T. Weiss, “Removal of contrast medium from the coronary sinus during coronary angiography: feasibility of a simple and available technique for the prevention of nephropathy,” Cardiovasc. Revasc. Med. 9, 9-13 (2008).
[CrossRef] [PubMed]

T. Yasuda, T. Saito, T. Kihara, S. Takatani, and A. Funakubo, “Development of a reflected optical fiber system for measuring oxygen saturation in an integrated artificial heart-lung system,” Artif. Organs 32, 229-234 (2008).
[CrossRef] [PubMed]

2007

M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12, 014024(2007).
[CrossRef] [PubMed]

A. Kienle, “Anisotropic light diffusion: an oxymoron?,” Phys. Rev. Lett. 98, 218104 (2007).
[CrossRef] [PubMed]

2006

M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
[CrossRef]

I. Michishita and Z. Fujii, “A novel contrast removal system from the coronary sinus using an adsorbing column during coronary angiography in a porcine model,” J. Am. Coll. Cardiol. 47, 1866-1870 (2006).
[CrossRef] [PubMed]

M.-R. Movahed, J. Wong, and S. Molloi, “Removal of iodine contrast from coronary sinus in swine during coronary angiography,” J. Am. Coll. Cardiol. 47, 465-467 (2006).
[CrossRef] [PubMed]

M. Tepel, P. Aspelin, and N. Lameire, “Contrast-induced nephropathy: a clinical and evidence-based approach,” Circulation 113, 1799-1806 (2006).
[CrossRef] [PubMed]

R. W. Katzberg, “Contrast-induced nephrotoxicity: clinical landscape,” Kidney Int. 69, S3-S7 (2006).
[CrossRef]

2005

W. H. Reinhart, B. Pleisch, L. G. Harris, and M. Lutolf, “Influence of contrast media (iopromide, ioxaglate, gadolinium-DOTA) on blood viscosity, erythrocyte morphology and platelet function,” Clin. Hemorheol. Microcirc. 32, 227-239 (2005).
[PubMed]

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

2004

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

2003

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003).
[CrossRef]

2002

Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. (Baltimore) 94, S26-S30 (2002).

2001

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6, 457-467 (2001).
[CrossRef] [PubMed]

1999

T. Kaiwa, T. Mori, T. Kijima, M. Nogawa, C. Nojiri, and S. Takatani, “Measurement of blood hematocrit inside the magnetically suspended centrifugal pump using an optical technique: application to assessment of pump flow,” Artif. Organs 23, 490-495 (1999).
[CrossRef] [PubMed]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4, 36-46(1999).
[CrossRef]

1998

D. K. Sardar and L. B. Levy, “Optical properties of whole blood,” Lasers Med. Sci. 13, 106-111 (1998).
[CrossRef]

M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37, 7410-7418 (1998).
[CrossRef]

1997

P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O'Neill, “Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality,” Am. J. Med. 103, 368-375 (1997).
[CrossRef] [PubMed]

1992

N. H. Strickland, M. W. Rampling, P. Dawson, and G. Martin, “Contrast media-induced effects on blood rheology and their importance in angiography,” Clin. Radiol. 45, 240-242 (1992).
[CrossRef] [PubMed]

1989

1988

J. M. Steinke and A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027-4033 (1988).2
[CrossRef] [PubMed]

S. Takatani, H. Noda, H. Takano, and T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187-198 (1988).
[CrossRef] [PubMed]

1987

J. M. Steinke and A. P. Shepherd, “Diffuse reflectance of whole blood: model for a diverging light beam,” IEEE Trans. Bio-Med. Eng. BME-34, 826-834 (1987).
[CrossRef]

J. M. Steinke and A. P. Shepherd, “Reflectance measurements of hematocrit and oxyhemoglobin saturation,” Am. J. Physiol. Heart Circ. Physiol. 253, H147-H153 (1987).

1986

J. Schmitt, F. Mihm, and J. Meindl, “New methods for whole blood oximetry,” Ann. Biomed. Eng. 14, 35-52 (1986).
[CrossRef] [PubMed]

1979

M. L. Landsman, N. Knop, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection densitometer with cardiac output calculator,” Pfluegers Arch. Eur. J. Physiol. 379, 59-69 (1979).
[CrossRef]

1978

M. L. Landsman, N. Knop, G. Kwant, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection oximeter,” Pfluegers Arch. Eur. J. Physiol. 373, 273-282 (1978).
[CrossRef]

1976

F. Tremolieres, F. Lecompte, M. Sinet, A. Chirico, J. Bech, J. M. Vallois, M. C. Blayo, and J. J. Pocidalo, “In vivo measurements of oxyhaemoglobin saturation by a fiberoptic catheter,” Intensive Care Med. 2, 177-180 (1976).
[CrossRef]

L. Reynolds, C. Johnson, and A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters,” Appl. Opt. 15, 2059-2067 (1976).
[CrossRef] [PubMed]

1975

S. Mohapatra and C. Smith, “Infrared isobestic region for whole blood,” Med. Biol. Eng. Comput. 13, 929-931 (1975).

1970

R. J. Zdrojkowski and N. R. Pisharoty, “Optical transmission and reflection by blood,” IEEE Trans. Bio-Med. Eng. BME-17, 122-128 (1970).
[CrossRef]

C. C. Johnson, “Optical diffusion in blood,” IEEE Trans. Bio-Med. Eng. BME-17, 129-133 (1970).
[CrossRef]

1967

1962

Y. Enson, W. A. Briscoe, M. L. Polanyi, and A. Cournand, “In vivo studies with an intravascular and intracardiac reflection oximeter,” J. Appl. Physiol. 17, 552-558 (1962).
[PubMed]

Aalders, M. C. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Akutsu, T.

S. Takatani, H. Noda, H. Takano, and T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187-198 (1988).
[CrossRef] [PubMed]

Aspelin, P.

M. Tepel, P. Aspelin, and N. Lameire, “Contrast-induced nephropathy: a clinical and evidence-based approach,” Circulation 113, 1799-1806 (2006).
[CrossRef] [PubMed]

Athanassiou, G.

K. Katsanos, A. Moutzouri, D. Karnabatidis, D. Siablis, and G. Athanassiou, “Influence of contrast media on red blood cell deformability,” Clin. Hemorheol. Microcirc. 39, 87-91 (2008).
[PubMed]

Aymong, E. D.

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

Backman, V.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003).
[CrossRef]

Bartorelli, A. L.

A. L. Bartorelli and G. Marenzi, “Contrast-induced nephropathy,” J. Interv. Cardiol. 21, 74-85 (2008).
[CrossRef]

Bech, J.

F. Tremolieres, F. Lecompte, M. Sinet, A. Chirico, J. Bech, J. M. Vallois, M. C. Blayo, and J. J. Pocidalo, “In vivo measurements of oxyhaemoglobin saturation by a fiberoptic catheter,” Intensive Care Med. 2, 177-180 (1976).
[CrossRef]

Bernstein, S. J.

A. M. Kelly, B. Dwamena, P. Cronin, S. J. Bernstein, and R. C. Carlos, “Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy,” Ann. Intern. Med. 148, 284-294 (2008).
[PubMed]

Blayo, M. C.

F. Tremolieres, F. Lecompte, M. Sinet, A. Chirico, J. Bech, J. M. Vallois, M. C. Blayo, and J. J. Pocidalo, “In vivo measurements of oxyhaemoglobin saturation by a fiberoptic catheter,” Intensive Care Med. 2, 177-180 (1976).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).
[CrossRef]

Briscoe, W. A.

Y. Enson, W. A. Briscoe, M. L. Polanyi, and A. Cournand, “In vivo studies with an intravascular and intracardiac reflection oximeter,” J. Appl. Physiol. 17, 552-558 (1962).
[PubMed]

Carlos, R. C.

A. M. Kelly, B. Dwamena, P. Cronin, S. J. Bernstein, and R. C. Carlos, “Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy,” Ann. Intern. Med. 148, 284-294 (2008).
[PubMed]

Chen, K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003).
[CrossRef]

Chirico, A.

F. Tremolieres, F. Lecompte, M. Sinet, A. Chirico, J. Bech, J. M. Vallois, M. C. Blayo, and J. J. Pocidalo, “In vivo measurements of oxyhaemoglobin saturation by a fiberoptic catheter,” Intensive Care Med. 2, 177-180 (1976).
[CrossRef]

Cournand, A.

Y. Enson, W. A. Briscoe, M. L. Polanyi, and A. Cournand, “In vivo studies with an intravascular and intracardiac reflection oximeter,” J. Appl. Physiol. 17, 552-558 (1962).
[PubMed]

Cronin, P.

A. M. Kelly, B. Dwamena, P. Cronin, S. J. Bernstein, and R. C. Carlos, “Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy,” Ann. Intern. Med. 148, 284-294 (2008).
[PubMed]

Danenberg, H. D.

H. D. Danenberg, C. Lotan, B. Varshitski, S. Rosenheck, and A. T. Weiss, “Removal of contrast medium from the coronary sinus during coronary angiography: feasibility of a simple and available technique for the prevention of nephropathy,” Cardiovasc. Revasc. Med. 9, 9-13 (2008).
[CrossRef] [PubMed]

Dangas, G.

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

Dawson, P.

N. H. Strickland, M. W. Rampling, P. Dawson, and G. Martin, “Contrast media-induced effects on blood rheology and their importance in angiography,” Clin. Radiol. 45, 240-242 (1992).
[CrossRef] [PubMed]

Dorschel, K.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4, 36-46(1999).
[CrossRef]

Dwamena, B.

A. M. Kelly, B. Dwamena, P. Cronin, S. J. Bernstein, and R. C. Carlos, “Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy,” Ann. Intern. Med. 148, 284-294 (2008).
[PubMed]

Enson, Y.

Y. Enson, W. A. Briscoe, M. L. Polanyi, and A. Cournand, “In vivo studies with an intravascular and intracardiac reflection oximeter,” J. Appl. Physiol. 17, 552-558 (1962).
[PubMed]

Faber, D. J.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Friebel, M.

M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12, 014024(2007).
[CrossRef] [PubMed]

M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
[CrossRef]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4, 36-46(1999).
[CrossRef]

Fujii, Z.

I. Michishita and Z. Fujii, “A novel contrast removal system from the coronary sinus using an adsorbing column during coronary angiography in a porcine model,” J. Am. Coll. Cardiol. 47, 1866-1870 (2006).
[CrossRef] [PubMed]

Funakubo, A.

T. Yasuda, T. Saito, T. Kihara, S. Takatani, and A. Funakubo, “Development of a reflected optical fiber system for measuring oxygen saturation in an integrated artificial heart-lung system,” Artif. Organs 32, 229-234 (2008).
[CrossRef] [PubMed]

Goldberg, M. J.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003).
[CrossRef]

Hahn, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4, 36-46(1999).
[CrossRef]

Hammer, M.

Harris, L. G.

W. H. Reinhart, B. Pleisch, L. G. Harris, and M. Lutolf, “Influence of contrast media (iopromide, ioxaglate, gadolinium-DOTA) on blood viscosity, erythrocyte morphology and platelet function,” Clin. Hemorheol. Microcirc. 32, 227-239 (2005).
[PubMed]

Helfmann, J.

M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12, 014024(2007).
[CrossRef] [PubMed]

Hooper, B. A.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).
[CrossRef]

Iakovou, I.

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

Ishimaru, A.

Johnson, C.

Johnson, C. C.

C. C. Johnson, “Optical diffusion in blood,” IEEE Trans. Bio-Med. Eng. BME-17, 129-133 (1970).
[CrossRef]

Kaiwa, T.

T. Kaiwa, T. Mori, T. Kijima, M. Nogawa, C. Nojiri, and S. Takatani, “Measurement of blood hematocrit inside the magnetically suspended centrifugal pump using an optical technique: application to assessment of pump flow,” Artif. Organs 23, 490-495 (1999).
[CrossRef] [PubMed]

Kapany, N. S.

Karnabatidis, D.

K. Katsanos, A. Moutzouri, D. Karnabatidis, D. Siablis, and G. Athanassiou, “Influence of contrast media on red blood cell deformability,” Clin. Hemorheol. Microcirc. 39, 87-91 (2008).
[PubMed]

Katsanos, K.

K. Katsanos, A. Moutzouri, D. Karnabatidis, D. Siablis, and G. Athanassiou, “Influence of contrast media on red blood cell deformability,” Clin. Hemorheol. Microcirc. 39, 87-91 (2008).
[PubMed]

Katzberg, R. W.

R. W. Katzberg, “Contrast-induced nephrotoxicity: clinical landscape,” Kidney Int. 69, S3-S7 (2006).
[CrossRef]

Kelly, A. M.

A. M. Kelly, B. Dwamena, P. Cronin, S. J. Bernstein, and R. C. Carlos, “Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy,” Ann. Intern. Med. 148, 284-294 (2008).
[PubMed]

Kienle, A.

A. Kienle, “Anisotropic light diffusion: an oxymoron?,” Phys. Rev. Lett. 98, 218104 (2007).
[CrossRef] [PubMed]

Kihara, T.

T. Yasuda, T. Saito, T. Kihara, S. Takatani, and A. Funakubo, “Development of a reflected optical fiber system for measuring oxygen saturation in an integrated artificial heart-lung system,” Artif. Organs 32, 229-234 (2008).
[CrossRef] [PubMed]

Kijima, T.

T. Kaiwa, T. Mori, T. Kijima, M. Nogawa, C. Nojiri, and S. Takatani, “Measurement of blood hematocrit inside the magnetically suspended centrifugal pump using an optical technique: application to assessment of pump flow,” Artif. Organs 23, 490-495 (1999).
[CrossRef] [PubMed]

Kim, Y. L.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003).
[CrossRef]

Kipshidze, N. N.

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

Knop, N.

M. L. Landsman, N. Knop, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection densitometer with cardiac output calculator,” Pfluegers Arch. Eur. J. Physiol. 379, 59-69 (1979).
[CrossRef]

M. L. Landsman, N. Knop, G. Kwant, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection oximeter,” Pfluegers Arch. Eur. J. Physiol. 373, 273-282 (1978).
[CrossRef]

Kolb, A.

Kromin, A. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003).
[CrossRef]

Kwant, G.

M. L. Landsman, N. Knop, G. Kwant, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection oximeter,” Pfluegers Arch. Eur. J. Physiol. 373, 273-282 (1978).
[CrossRef]

Lameire, N.

M. Tepel, P. Aspelin, and N. Lameire, “Contrast-induced nephropathy: a clinical and evidence-based approach,” Circulation 113, 1799-1806 (2006).
[CrossRef] [PubMed]

Landsman, M. L.

M. L. Landsman, N. Knop, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection densitometer with cardiac output calculator,” Pfluegers Arch. Eur. J. Physiol. 379, 59-69 (1979).
[CrossRef]

M. L. Landsman, N. Knop, G. Kwant, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection oximeter,” Pfluegers Arch. Eur. J. Physiol. 373, 273-282 (1978).
[CrossRef]

Lansky, A. J.

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

Lecompte, F.

F. Tremolieres, F. Lecompte, M. Sinet, A. Chirico, J. Bech, J. M. Vallois, M. C. Blayo, and J. J. Pocidalo, “In vivo measurements of oxyhaemoglobin saturation by a fiberoptic catheter,” Intensive Care Med. 2, 177-180 (1976).
[CrossRef]

Leon, M. B.

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

Levin, R. N.

P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O'Neill, “Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality,” Am. J. Med. 103, 368-375 (1997).
[CrossRef] [PubMed]

Levy, L. B.

D. K. Sardar and L. B. Levy, “Optical properties of whole blood,” Lasers Med. Sci. 13, 106-111 (1998).
[CrossRef]

Lewinsky, R. M.

Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. (Baltimore) 94, S26-S30 (2002).

Ling, J.

J. Ling, S. Takatani, G. P. Noon, and Y. Nose, “In-vivo studies of reflectance pulse oximeter sensor,” in Physiological Imaging, Spectroscopy, and Early-Detection Diagnostic Methods (SPIE, 1993), pp. 256-262.

Liu, Y.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003).
[CrossRef]

Loschenov, V. B.

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6, 457-467 (2001).
[CrossRef] [PubMed]

Lotan, C.

H. D. Danenberg, C. Lotan, B. Varshitski, S. Rosenheck, and A. T. Weiss, “Removal of contrast medium from the coronary sinus during coronary angiography: feasibility of a simple and available technique for the prevention of nephropathy,” Cardiovasc. Revasc. Med. 9, 9-13 (2008).
[CrossRef] [PubMed]

Lutolf, M.

W. H. Reinhart, B. Pleisch, L. G. Harris, and M. Lutolf, “Influence of contrast media (iopromide, ioxaglate, gadolinium-DOTA) on blood viscosity, erythrocyte morphology and platelet function,” Clin. Hemorheol. Microcirc. 32, 227-239 (2005).
[PubMed]

Marenzi, G.

A. L. Bartorelli and G. Marenzi, “Contrast-induced nephropathy,” J. Interv. Cardiol. 21, 74-85 (2008).
[CrossRef]

Martin, G.

N. H. Strickland, M. W. Rampling, P. Dawson, and G. Martin, “Contrast media-induced effects on blood rheology and their importance in angiography,” Clin. Radiol. 45, 240-242 (1992).
[CrossRef] [PubMed]

McCullough, P. A.

P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O'Neill, “Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality,” Am. J. Med. 103, 368-375 (1997).
[CrossRef] [PubMed]

Mehran, R.

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

Meindl, J.

J. Schmitt, F. Mihm, and J. Meindl, “New methods for whole blood oximetry,” Ann. Biomed. Eng. 14, 35-52 (1986).
[CrossRef] [PubMed]

Meinke, M.

M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12, 014024(2007).
[CrossRef] [PubMed]

M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
[CrossRef]

Mendelson, Y.

Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. (Baltimore) 94, S26-S30 (2002).

Michel, B.

Michishita, I.

I. Michishita and Z. Fujii, “A novel contrast removal system from the coronary sinus using an adsorbing column during coronary angiography in a porcine model,” J. Am. Coll. Cardiol. 47, 1866-1870 (2006).
[CrossRef] [PubMed]

Mihm, F.

J. Schmitt, F. Mihm, and J. Meindl, “New methods for whole blood oximetry,” Ann. Biomed. Eng. 14, 35-52 (1986).
[CrossRef] [PubMed]

Mik, E. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Mintz, G. S.

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

Mohapatra, S.

S. Mohapatra and C. Smith, “Infrared isobestic region for whole blood,” Med. Biol. Eng. Comput. 13, 929-931 (1975).

Molloi, S.

M.-R. Movahed, J. Wong, and S. Molloi, “Removal of iodine contrast from coronary sinus in swine during coronary angiography,” J. Am. Coll. Cardiol. 47, 465-467 (2006).
[CrossRef] [PubMed]

Mook, G. A.

M. L. Landsman, N. Knop, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection densitometer with cardiac output calculator,” Pfluegers Arch. Eur. J. Physiol. 379, 59-69 (1979).
[CrossRef]

M. L. Landsman, N. Knop, G. Kwant, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection oximeter,” Pfluegers Arch. Eur. J. Physiol. 373, 273-282 (1978).
[CrossRef]

Mori, T.

T. Kaiwa, T. Mori, T. Kijima, M. Nogawa, C. Nojiri, and S. Takatani, “Measurement of blood hematocrit inside the magnetically suspended centrifugal pump using an optical technique: application to assessment of pump flow,” Artif. Organs 23, 490-495 (1999).
[CrossRef] [PubMed]

Moses, J. W.

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

Moussa, I.

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

Moutzouri, A.

K. Katsanos, A. Moutzouri, D. Karnabatidis, D. Siablis, and G. Athanassiou, “Influence of contrast media on red blood cell deformability,” Clin. Hemorheol. Microcirc. 39, 87-91 (2008).
[PubMed]

Movahed, M.-R.

M.-R. Movahed, J. Wong, and S. Molloi, “Removal of iodine contrast from coronary sinus in swine during coronary angiography,” J. Am. Coll. Cardiol. 47, 465-467 (2006).
[CrossRef] [PubMed]

Muller, G.

M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12, 014024(2007).
[CrossRef] [PubMed]

M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
[CrossRef]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4, 36-46(1999).
[CrossRef]

Nikolsky, E.

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

Noda, H.

S. Takatani, H. Noda, H. Takano, and T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187-198 (1988).
[CrossRef] [PubMed]

Nogawa, M.

T. Kaiwa, T. Mori, T. Kijima, M. Nogawa, C. Nojiri, and S. Takatani, “Measurement of blood hematocrit inside the magnetically suspended centrifugal pump using an optical technique: application to assessment of pump flow,” Artif. Organs 23, 490-495 (1999).
[CrossRef] [PubMed]

Nojiri, C.

T. Kaiwa, T. Mori, T. Kijima, M. Nogawa, C. Nojiri, and S. Takatani, “Measurement of blood hematocrit inside the magnetically suspended centrifugal pump using an optical technique: application to assessment of pump flow,” Artif. Organs 23, 490-495 (1999).
[CrossRef] [PubMed]

Noon, G. P.

J. Ling, S. Takatani, G. P. Noon, and Y. Nose, “In-vivo studies of reflectance pulse oximeter sensor,” in Physiological Imaging, Spectroscopy, and Early-Detection Diagnostic Methods (SPIE, 1993), pp. 256-262.

Nose, Y.

J. Ling, S. Takatani, G. P. Noon, and Y. Nose, “In-vivo studies of reflectance pulse oximeter sensor,” in Physiological Imaging, Spectroscopy, and Early-Detection Diagnostic Methods (SPIE, 1993), pp. 256-262.

O'Neill, W. W.

P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O'Neill, “Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality,” Am. J. Med. 103, 368-375 (1997).
[CrossRef] [PubMed]

Pisharoty, N. R.

R. J. Zdrojkowski and N. R. Pisharoty, “Optical transmission and reflection by blood,” IEEE Trans. Bio-Med. Eng. BME-17, 122-128 (1970).
[CrossRef]

Pleisch, B.

W. H. Reinhart, B. Pleisch, L. G. Harris, and M. Lutolf, “Influence of contrast media (iopromide, ioxaglate, gadolinium-DOTA) on blood viscosity, erythrocyte morphology and platelet function,” Clin. Hemorheol. Microcirc. 32, 227-239 (2005).
[PubMed]

Pocidalo, J. J.

F. Tremolieres, F. Lecompte, M. Sinet, A. Chirico, J. Bech, J. M. Vallois, M. C. Blayo, and J. J. Pocidalo, “In vivo measurements of oxyhaemoglobin saturation by a fiberoptic catheter,” Intensive Care Med. 2, 177-180 (1976).
[CrossRef]

Polanyi, M. L.

Y. Enson, W. A. Briscoe, M. L. Polanyi, and A. Cournand, “In vivo studies with an intravascular and intracardiac reflection oximeter,” J. Appl. Physiol. 17, 552-558 (1962).
[PubMed]

Prahl, S. A.

Rampling, M. W.

N. H. Strickland, M. W. Rampling, P. Dawson, and G. Martin, “Contrast media-induced effects on blood rheology and their importance in angiography,” Clin. Radiol. 45, 240-242 (1992).
[CrossRef] [PubMed]

Reinhart, W. H.

W. H. Reinhart, B. Pleisch, L. G. Harris, and M. Lutolf, “Influence of contrast media (iopromide, ioxaglate, gadolinium-DOTA) on blood viscosity, erythrocyte morphology and platelet function,” Clin. Hemorheol. Microcirc. 32, 227-239 (2005).
[PubMed]

Reynolds, L.

Rocher, L. L.

P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O'Neill, “Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality,” Am. J. Med. 103, 368-375 (1997).
[CrossRef] [PubMed]

Roggan, A.

M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
[CrossRef]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4, 36-46(1999).
[CrossRef]

Rosenheck, S.

H. D. Danenberg, C. Lotan, B. Varshitski, S. Rosenheck, and A. T. Weiss, “Removal of contrast medium from the coronary sinus during coronary angiography: feasibility of a simple and available technique for the prevention of nephropathy,” Cardiovasc. Revasc. Med. 9, 9-13 (2008).
[CrossRef] [PubMed]

Roy, H. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003).
[CrossRef]

Saito, T.

T. Yasuda, T. Saito, T. Kihara, S. Takatani, and A. Funakubo, “Development of a reflected optical fiber system for measuring oxygen saturation in an integrated artificial heart-lung system,” Artif. Organs 32, 229-234 (2008).
[CrossRef] [PubMed]

Sardar, D. K.

D. K. Sardar and L. B. Levy, “Optical properties of whole blood,” Lasers Med. Sci. 13, 106-111 (1998).
[CrossRef]

Schmitt, J.

J. Schmitt, F. Mihm, and J. Meindl, “New methods for whole blood oximetry,” Ann. Biomed. Eng. 14, 35-52 (1986).
[CrossRef] [PubMed]

Schweitzer, D.

Shepherd, A. P.

J. M. Steinke and A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027-4033 (1988).2
[CrossRef] [PubMed]

J. M. Steinke and A. P. Shepherd, “Reflectance measurements of hematocrit and oxyhemoglobin saturation,” Am. J. Physiol. Heart Circ. Physiol. 253, H147-H153 (1987).

J. M. Steinke and A. P. Shepherd, “Diffuse reflectance of whole blood: model for a diverging light beam,” IEEE Trans. Bio-Med. Eng. BME-34, 826-834 (1987).
[CrossRef]

Siablis, D.

K. Katsanos, A. Moutzouri, D. Karnabatidis, D. Siablis, and G. Athanassiou, “Influence of contrast media on red blood cell deformability,” Clin. Hemorheol. Microcirc. 39, 87-91 (2008).
[PubMed]

Sinet, M.

F. Tremolieres, F. Lecompte, M. Sinet, A. Chirico, J. Bech, J. M. Vallois, M. C. Blayo, and J. J. Pocidalo, “In vivo measurements of oxyhaemoglobin saturation by a fiberoptic catheter,” Intensive Care Med. 2, 177-180 (1976).
[CrossRef]

Smith, C.

S. Mohapatra and C. Smith, “Infrared isobestic region for whole blood,” Med. Biol. Eng. Comput. 13, 929-931 (1975).

Steinke, J. M.

J. M. Steinke and A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027-4033 (1988).2
[CrossRef] [PubMed]

J. M. Steinke and A. P. Shepherd, “Reflectance measurements of hematocrit and oxyhemoglobin saturation,” Am. J. Physiol. Heart Circ. Physiol. 253, H147-H153 (1987).

J. M. Steinke and A. P. Shepherd, “Diffuse reflectance of whole blood: model for a diverging light beam,” IEEE Trans. Bio-Med. Eng. BME-34, 826-834 (1987).
[CrossRef]

Stone, G. W.

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

Stratonnikov, A. A.

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6, 457-467 (2001).
[CrossRef] [PubMed]

Strickland, N. H.

N. H. Strickland, M. W. Rampling, P. Dawson, and G. Martin, “Contrast media-induced effects on blood rheology and their importance in angiography,” Clin. Radiol. 45, 240-242 (1992).
[CrossRef] [PubMed]

Takano, H.

S. Takatani, H. Noda, H. Takano, and T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187-198 (1988).
[CrossRef] [PubMed]

Takatani, S.

T. Yasuda, T. Saito, T. Kihara, S. Takatani, and A. Funakubo, “Development of a reflected optical fiber system for measuring oxygen saturation in an integrated artificial heart-lung system,” Artif. Organs 32, 229-234 (2008).
[CrossRef] [PubMed]

T. Kaiwa, T. Mori, T. Kijima, M. Nogawa, C. Nojiri, and S. Takatani, “Measurement of blood hematocrit inside the magnetically suspended centrifugal pump using an optical technique: application to assessment of pump flow,” Artif. Organs 23, 490-495 (1999).
[CrossRef] [PubMed]

S. Takatani, H. Noda, H. Takano, and T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187-198 (1988).
[CrossRef] [PubMed]

J. Ling, S. Takatani, G. P. Noon, and Y. Nose, “In-vivo studies of reflectance pulse oximeter sensor,” in Physiological Imaging, Spectroscopy, and Early-Detection Diagnostic Methods (SPIE, 1993), pp. 256-262.

Tepel, M.

M. Tepel, P. Aspelin, and N. Lameire, “Contrast-induced nephropathy: a clinical and evidence-based approach,” Circulation 113, 1799-1806 (2006).
[CrossRef] [PubMed]

Thamm, E.

Tremolieres, F.

F. Tremolieres, F. Lecompte, M. Sinet, A. Chirico, J. Bech, J. M. Vallois, M. C. Blayo, and J. J. Pocidalo, “In vivo measurements of oxyhaemoglobin saturation by a fiberoptic catheter,” Intensive Care Med. 2, 177-180 (1976).
[CrossRef]

Tuchin, V. V.

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007).

Vallois, J. M.

F. Tremolieres, F. Lecompte, M. Sinet, A. Chirico, J. Bech, J. M. Vallois, M. C. Blayo, and J. J. Pocidalo, “In vivo measurements of oxyhaemoglobin saturation by a fiberoptic catheter,” Intensive Care Med. 2, 177-180 (1976).
[CrossRef]

van Gemert, M. J. C.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

van Leeuwen, T. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Varshitski, B.

H. D. Danenberg, C. Lotan, B. Varshitski, S. Rosenheck, and A. T. Weiss, “Removal of contrast medium from the coronary sinus during coronary angiography: feasibility of a simple and available technique for the prevention of nephropathy,” Cardiovasc. Revasc. Med. 9, 9-13 (2008).
[CrossRef] [PubMed]

Vo-Dinh, T.

T. Vo-Dinh, Biomedical Photonics Handbook, 1st ed. (CRC Press, 2003).
[CrossRef]

Wali, R. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003).
[CrossRef]

Wasserman, Y.

Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. (Baltimore) 94, S26-S30 (2002).

Weiss, A. T.

H. D. Danenberg, C. Lotan, B. Varshitski, S. Rosenheck, and A. T. Weiss, “Removal of contrast medium from the coronary sinus during coronary angiography: feasibility of a simple and available technique for the prevention of nephropathy,” Cardiovasc. Revasc. Med. 9, 9-13 (2008).
[CrossRef] [PubMed]

Welch, A. J.

Wolyn, R.

P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O'Neill, “Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality,” Am. J. Med. 103, 368-375 (1997).
[CrossRef] [PubMed]

Wong, J.

M.-R. Movahed, J. Wong, and S. Molloi, “Removal of iodine contrast from coronary sinus in swine during coronary angiography,” J. Am. Coll. Cardiol. 47, 465-467 (2006).
[CrossRef] [PubMed]

Yasuda, T.

T. Yasuda, T. Saito, T. Kihara, S. Takatani, and A. Funakubo, “Development of a reflected optical fiber system for measuring oxygen saturation in an integrated artificial heart-lung system,” Artif. Organs 32, 229-234 (2008).
[CrossRef] [PubMed]

Yoon, G.

Zdrojkowski, R. J.

R. J. Zdrojkowski and N. R. Pisharoty, “Optical transmission and reflection by blood,” IEEE Trans. Bio-Med. Eng. BME-17, 122-128 (1970).
[CrossRef]

Zijlstra, W. G.

M. L. Landsman, N. Knop, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection densitometer with cardiac output calculator,” Pfluegers Arch. Eur. J. Physiol. 379, 59-69 (1979).
[CrossRef]

M. L. Landsman, N. Knop, G. Kwant, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection oximeter,” Pfluegers Arch. Eur. J. Physiol. 373, 273-282 (1978).
[CrossRef]

Am. J. Cardiol.

G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005).
[CrossRef]

Am. J. Med.

P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O'Neill, “Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality,” Am. J. Med. 103, 368-375 (1997).
[CrossRef] [PubMed]

Am. J. Physiol. Heart Circ. Physiol.

J. M. Steinke and A. P. Shepherd, “Reflectance measurements of hematocrit and oxyhemoglobin saturation,” Am. J. Physiol. Heart Circ. Physiol. 253, H147-H153 (1987).

Anesth. Analg. (Baltimore)

Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. (Baltimore) 94, S26-S30 (2002).

Ann. Biomed. Eng.

J. Schmitt, F. Mihm, and J. Meindl, “New methods for whole blood oximetry,” Ann. Biomed. Eng. 14, 35-52 (1986).
[CrossRef] [PubMed]

Ann. Intern. Med.

A. M. Kelly, B. Dwamena, P. Cronin, S. J. Bernstein, and R. C. Carlos, “Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy,” Ann. Intern. Med. 148, 284-294 (2008).
[PubMed]

Appl. Opt.

Artif. Organs

T. Kaiwa, T. Mori, T. Kijima, M. Nogawa, C. Nojiri, and S. Takatani, “Measurement of blood hematocrit inside the magnetically suspended centrifugal pump using an optical technique: application to assessment of pump flow,” Artif. Organs 23, 490-495 (1999).
[CrossRef] [PubMed]

T. Yasuda, T. Saito, T. Kihara, S. Takatani, and A. Funakubo, “Development of a reflected optical fiber system for measuring oxygen saturation in an integrated artificial heart-lung system,” Artif. Organs 32, 229-234 (2008).
[CrossRef] [PubMed]

Cardiovasc. Revasc. Med.

H. D. Danenberg, C. Lotan, B. Varshitski, S. Rosenheck, and A. T. Weiss, “Removal of contrast medium from the coronary sinus during coronary angiography: feasibility of a simple and available technique for the prevention of nephropathy,” Cardiovasc. Revasc. Med. 9, 9-13 (2008).
[CrossRef] [PubMed]

Circulation

M. Tepel, P. Aspelin, and N. Lameire, “Contrast-induced nephropathy: a clinical and evidence-based approach,” Circulation 113, 1799-1806 (2006).
[CrossRef] [PubMed]

Clin. Hemorheol. Microcirc.

W. H. Reinhart, B. Pleisch, L. G. Harris, and M. Lutolf, “Influence of contrast media (iopromide, ioxaglate, gadolinium-DOTA) on blood viscosity, erythrocyte morphology and platelet function,” Clin. Hemorheol. Microcirc. 32, 227-239 (2005).
[PubMed]

K. Katsanos, A. Moutzouri, D. Karnabatidis, D. Siablis, and G. Athanassiou, “Influence of contrast media on red blood cell deformability,” Clin. Hemorheol. Microcirc. 39, 87-91 (2008).
[PubMed]

Clin. Radiol.

N. H. Strickland, M. W. Rampling, P. Dawson, and G. Martin, “Contrast media-induced effects on blood rheology and their importance in angiography,” Clin. Radiol. 45, 240-242 (1992).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003).
[CrossRef]

IEEE Trans. Bio-Med. Eng.

J. M. Steinke and A. P. Shepherd, “Diffuse reflectance of whole blood: model for a diverging light beam,” IEEE Trans. Bio-Med. Eng. BME-34, 826-834 (1987).
[CrossRef]

R. J. Zdrojkowski and N. R. Pisharoty, “Optical transmission and reflection by blood,” IEEE Trans. Bio-Med. Eng. BME-17, 122-128 (1970).
[CrossRef]

C. C. Johnson, “Optical diffusion in blood,” IEEE Trans. Bio-Med. Eng. BME-17, 129-133 (1970).
[CrossRef]

IEEE Trans. Biomed. Eng.

S. Takatani, H. Noda, H. Takano, and T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187-198 (1988).
[CrossRef] [PubMed]

Intensive Care Med.

F. Tremolieres, F. Lecompte, M. Sinet, A. Chirico, J. Bech, J. M. Vallois, M. C. Blayo, and J. J. Pocidalo, “In vivo measurements of oxyhaemoglobin saturation by a fiberoptic catheter,” Intensive Care Med. 2, 177-180 (1976).
[CrossRef]

J. Am. Coll. Cardiol.

I. Michishita and Z. Fujii, “A novel contrast removal system from the coronary sinus using an adsorbing column during coronary angiography in a porcine model,” J. Am. Coll. Cardiol. 47, 1866-1870 (2006).
[CrossRef] [PubMed]

M.-R. Movahed, J. Wong, and S. Molloi, “Removal of iodine contrast from coronary sinus in swine during coronary angiography,” J. Am. Coll. Cardiol. 47, 465-467 (2006).
[CrossRef] [PubMed]

J. Appl. Physiol.

Y. Enson, W. A. Briscoe, M. L. Polanyi, and A. Cournand, “In vivo studies with an intravascular and intracardiac reflection oximeter,” J. Appl. Physiol. 17, 552-558 (1962).
[PubMed]

J. Biomed. Opt.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4, 36-46(1999).
[CrossRef]

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6, 457-467 (2001).
[CrossRef] [PubMed]

M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
[CrossRef]

M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12, 014024(2007).
[CrossRef] [PubMed]

J. Interv. Cardiol.

A. L. Bartorelli and G. Marenzi, “Contrast-induced nephropathy,” J. Interv. Cardiol. 21, 74-85 (2008).
[CrossRef]

Kidney Int.

R. W. Katzberg, “Contrast-induced nephrotoxicity: clinical landscape,” Kidney Int. 69, S3-S7 (2006).
[CrossRef]

Lasers Med. Sci.

D. K. Sardar and L. B. Levy, “Optical properties of whole blood,” Lasers Med. Sci. 13, 106-111 (1998).
[CrossRef]

Med. Biol. Eng. Comput.

S. Mohapatra and C. Smith, “Infrared isobestic region for whole blood,” Med. Biol. Eng. Comput. 13, 929-931 (1975).

Pfluegers Arch. Eur. J. Physiol.

M. L. Landsman, N. Knop, G. Kwant, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection oximeter,” Pfluegers Arch. Eur. J. Physiol. 373, 273-282 (1978).
[CrossRef]

M. L. Landsman, N. Knop, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection densitometer with cardiac output calculator,” Pfluegers Arch. Eur. J. Physiol. 379, 59-69 (1979).
[CrossRef]

Phys. Rev. Lett.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

A. Kienle, “Anisotropic light diffusion: an oxymoron?,” Phys. Rev. Lett. 98, 218104 (2007).
[CrossRef] [PubMed]

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).
[CrossRef]

J. Ling, S. Takatani, G. P. Noon, and Y. Nose, “In-vivo studies of reflectance pulse oximeter sensor,” in Physiological Imaging, Spectroscopy, and Early-Detection Diagnostic Methods (SPIE, 1993), pp. 256-262.

T. Vo-Dinh, Biomedical Photonics Handbook, 1st ed. (CRC Press, 2003).
[CrossRef]

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Experimental setup and probe geometry: the illumination from the xenon lamp is delivered through six illumination fibers, and the light reflected from the sample is detected by one reading fiber connected to the spectrometer. (b) Probe performance validation: comparison of experimental data with simulations using Mie theory in the 500 900 nm range. The spectra of the Mie simulation were convoluted by the spectral point spread function of the spectrometer. The excellent match between the experiment result and the simulation with R 2 = 0.91 supports the proper calibration of the experimental setup and the specifications of the probe.

Fig. 2
Fig. 2

In vivo contrast detection and removal system consisting of the fiber-optic reflectance probe and the aspiration catheter (Sentinel catheter; photograph courtesy of Catharos Medical Systems, Inc.). The centering basket expands itself and supports the entire system at the center of the lumen area, when deployed. Blood converges by the membrane toward the fiber-optic sensor to maximize the sensitivity of the reflectance signal. Under normal conditions, blood passes by the system through the bypass zone, but, upon detection of the contrast, a control module automatically activates the aspiration system to withdraw contrast–blood mixture through the catheter.

Fig. 3
Fig. 3

(a) Whole blood reflectance spectra: porcine whole blood samples of HCT = 44 % (arterial blood, oxygen saturation 99%; venous blood, oxygen saturation 70%; deoxygenated blood, oxygen saturation 0%). Each blood sample of different oxygen saturations has its own distinctive reflectance spectral shape. (b) Whole blood reflectance spectra at various HCT levels of porcine arterial blood samples: the reflectance spectra are shifted up as the HCT level increases, and the spectral signals are saturated as the HCT level reaches the normal HCT level of 44%. Inset, changes in the reflectance intensity at 627 nm .

Fig. 4
Fig. 4

(a) Whole blood reflectance spectra at various oxygen saturation levels of ovine whole blood samples of the HCT level of 42%. A change in oxygenation levels alters the shape of the reflectance spectrum at the isosbestic point of 773 nm . (b) Detailed view of reflectance changes near the isosbestic point as oxygen saturation varies. The straight lines are linear fittings of reflectance data at each oxygen level between 766 and 780 nm . (c) Reflectance intensity at the isosbestic point of ovine blood samples ( n = 5 ). Because intensity I ( 773 nm ) ) is independent of the oxygen saturation level, it allows an accurate estimation of the HCT level. The fitting curve is for general interpretation of data points. The error bar indicates the minimum and maximum values of measurement at each data point. (d) Slope changes at the isosbestic point of ovine blood samples ( n = 5 ). The slope change at 773 nm is a function of oxygen saturation levels. Thus, the reflectance intensity and the spectral slope at 773 nm allow the simultaneous quantification of both HCT and oxygen saturation levels from a single reflectance reading. The error bar indicates the minimum and maximum values of measurement at each data point.

Fig. 5
Fig. 5

(a) Whole blood reflectance spectra at different HCT levels resulting from different concentrations of a representative contrast medium for angiography (i.e., Visipaque) in ovine arterial blood: the contrast medium does not change the overall spectral shape of the reflectance spectra, indicating that it affects mainly the HCT levels. (b) Reflectance intensity at 627 nm of different HCT levels for the contrast medium (Visipaque) and the saline solution mixed with ovine arterial blood: the error bar indicates the minimum and maximum values of measurement at each data point

Fig. 6
Fig. 6

Comparison of spectral shapes of (a) the ovine whole blood sample and (b) the scattering suspension of the microspheres. The spectral shapes obtained by using the two probes are significantly similar in both samples.

Fig. 7
Fig. 7

(a). Illustration of an ideal basket position when the catheter is deployed in the canine coronary sinus. (b) A representative reflectance intensity signal monitored continuously over time in the canine coronary sinus. The left-hand axis is the reflectance signal converted to voltage, and the right-hand axis is the aspiration status. Solid curve, reflectance signal used by the contrast detection in the coronary sinus. Dotted curve, resulting aspiration status. Changes in temporal HCT levels resulting from the contrast (Visipaque) injection can be detected through the whole blood reflectance measurement.

Metrics