Abstract

Here we propose optofluidic spherical microlenses that can change their focal distance by varying the refractive index of the liquid that composes them. These lenses are fabricated in the bulk of a polymeric mixture. Results of a characterization study of the profile of the lenses, the image forming capability, and the behavior of the focal distance as a function of the refractive index are presented. Ionic liquids are suggested as a source of liquids useful for fabricating this type of lens.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Whitesides and A. D. Sroock, “Flexible methods for microfluidics,” Phys. Today 54, 42-48 (2001).
    [CrossRef]
  2. H.P.Herzig, ed., Micro-Optics Elements, Systems and Applications (Taylor and Francis, 1998).
  3. D. Erickson, Changhuei Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photonics Spectra 42, 74-79(2008).
  4. De-Ying Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Yu-Hwa Lo, “High performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
    [CrossRef] [PubMed]
  5. Hongwen Ren and Shin-Tson Wu, “Variable focus liquid lens,” Opt. Express 15, 5931-5936 (2007).
    [CrossRef] [PubMed]
  6. S. Calixto, F. J. Sanchez-Marin, and M. Rosete-Aguilar, “Pressure sensor with optofluidic configuration,” Appl. Opt. 47, 6580-6585 (2008).
    [CrossRef] [PubMed]
  7. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
    [CrossRef]
  8. www.varioptic.com. A description of a liquid lens based on an electrowetting phenomenon is given.
  9. J. O. Valderrama and P. A. Robles, “Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids,” Ind. Eng. Chem. Res. 46, 1338-1344 (2007).
    [CrossRef]
  10. E. F. Borra, O. Seddiki, R. Angel, D. Eisenstein, P. Hickson, K. R. Seddon, and S. P. Worden, “Deposition of metal films on an ionic liquid as a basis for a lunar telescope,” Nature 447, 979-981 (2007).
    [CrossRef] [PubMed]
  11. R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20, 155102(2008).
    [CrossRef]
  12. F. W. Billmeyer, Textbook of Polymer Science (Wiley, 1984).
  13. http://www.dowcorning.com/content/rubber/silicone-rubber.aspx.
  14. S. Calixto, M. Rosete-Aguilar, D. Monzon-Hernandez, and V. P. Minkovich, “Capillary refractometer integrated in a microfluidic configuration,” Appl. Opt. 47, 843-848 (2008).
    [CrossRef] [PubMed]
  15. H. Zhao, S. V. Malhotra, and R. G. Luo, “Preparation and characterization of three room temperature ionic liquids,” Phys. Chem. Liq. 41, 487-492 (2003).
    [CrossRef]
  16. M. J. Earle, C. M. Gordon, N. V. Plechkova, K. R. Seddon, and T. Welton, “Decolorization of ionic liquids for spectroscopy,” Anal. Chem. 79, 758-763 (2007).
    [CrossRef] [PubMed]

2008 (4)

D. Erickson, Changhuei Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photonics Spectra 42, 74-79(2008).

S. Calixto, F. J. Sanchez-Marin, and M. Rosete-Aguilar, “Pressure sensor with optofluidic configuration,” Appl. Opt. 47, 6580-6585 (2008).
[CrossRef] [PubMed]

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20, 155102(2008).
[CrossRef]

S. Calixto, M. Rosete-Aguilar, D. Monzon-Hernandez, and V. P. Minkovich, “Capillary refractometer integrated in a microfluidic configuration,” Appl. Opt. 47, 843-848 (2008).
[CrossRef] [PubMed]

2007 (4)

M. J. Earle, C. M. Gordon, N. V. Plechkova, K. R. Seddon, and T. Welton, “Decolorization of ionic liquids for spectroscopy,” Anal. Chem. 79, 758-763 (2007).
[CrossRef] [PubMed]

J. O. Valderrama and P. A. Robles, “Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids,” Ind. Eng. Chem. Res. 46, 1338-1344 (2007).
[CrossRef]

E. F. Borra, O. Seddiki, R. Angel, D. Eisenstein, P. Hickson, K. R. Seddon, and S. P. Worden, “Deposition of metal films on an ionic liquid as a basis for a lunar telescope,” Nature 447, 979-981 (2007).
[CrossRef] [PubMed]

Hongwen Ren and Shin-Tson Wu, “Variable focus liquid lens,” Opt. Express 15, 5931-5936 (2007).
[CrossRef] [PubMed]

2004 (2)

De-Ying Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Yu-Hwa Lo, “High performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
[CrossRef] [PubMed]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
[CrossRef]

2003 (1)

H. Zhao, S. V. Malhotra, and R. G. Luo, “Preparation and characterization of three room temperature ionic liquids,” Phys. Chem. Liq. 41, 487-492 (2003).
[CrossRef]

2001 (1)

G. M. Whitesides and A. D. Sroock, “Flexible methods for microfluidics,” Phys. Today 54, 42-48 (2001).
[CrossRef]

Alencar, M. A. R. C.

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20, 155102(2008).
[CrossRef]

Angel, R.

E. F. Borra, O. Seddiki, R. Angel, D. Eisenstein, P. Hickson, K. R. Seddon, and S. P. Worden, “Deposition of metal films on an ionic liquid as a basis for a lunar telescope,” Nature 447, 979-981 (2007).
[CrossRef] [PubMed]

Berdichevsky, Y.

Billmeyer, F. W.

F. W. Billmeyer, Textbook of Polymer Science (Wiley, 1984).

Borra, E. F.

E. F. Borra, O. Seddiki, R. Angel, D. Eisenstein, P. Hickson, K. R. Seddon, and S. P. Worden, “Deposition of metal films on an ionic liquid as a basis for a lunar telescope,” Nature 447, 979-981 (2007).
[CrossRef] [PubMed]

Calixto, S.

Dupont, J.

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20, 155102(2008).
[CrossRef]

Earle, M. J.

M. J. Earle, C. M. Gordon, N. V. Plechkova, K. R. Seddon, and T. Welton, “Decolorization of ionic liquids for spectroscopy,” Anal. Chem. 79, 758-763 (2007).
[CrossRef] [PubMed]

Eisenstein, D.

E. F. Borra, O. Seddiki, R. Angel, D. Eisenstein, P. Hickson, K. R. Seddon, and S. P. Worden, “Deposition of metal films on an ionic liquid as a basis for a lunar telescope,” Nature 447, 979-981 (2007).
[CrossRef] [PubMed]

Erickson, D.

D. Erickson, Changhuei Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photonics Spectra 42, 74-79(2008).

Gordon, C. M.

M. J. Earle, C. M. Gordon, N. V. Plechkova, K. R. Seddon, and T. Welton, “Decolorization of ionic liquids for spectroscopy,” Anal. Chem. 79, 758-763 (2007).
[CrossRef] [PubMed]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
[CrossRef]

Hickmann, J. M.

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20, 155102(2008).
[CrossRef]

Hickson, P.

E. F. Borra, O. Seddiki, R. Angel, D. Eisenstein, P. Hickson, K. R. Seddon, and S. P. Worden, “Deposition of metal films on an ionic liquid as a basis for a lunar telescope,” Nature 447, 979-981 (2007).
[CrossRef] [PubMed]

Justis, N.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
[CrossRef]

Lien, V.

Lo, Yu-Hwa

Luo, R. G.

H. Zhao, S. V. Malhotra, and R. G. Luo, “Preparation and characterization of three room temperature ionic liquids,” Phys. Chem. Liq. 41, 487-492 (2003).
[CrossRef]

Malhotra, S. V.

H. Zhao, S. V. Malhotra, and R. G. Luo, “Preparation and characterization of three room temperature ionic liquids,” Phys. Chem. Liq. 41, 487-492 (2003).
[CrossRef]

Meneghetti, M. R.

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20, 155102(2008).
[CrossRef]

Minkovich, V. P.

Monzon-Hernandez, D.

Plechkova, N. V.

M. J. Earle, C. M. Gordon, N. V. Plechkova, K. R. Seddon, and T. Welton, “Decolorization of ionic liquids for spectroscopy,” Anal. Chem. 79, 758-763 (2007).
[CrossRef] [PubMed]

Psaltis, D.

D. Erickson, Changhuei Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photonics Spectra 42, 74-79(2008).

Ren, Hongwen

Robles, P. A.

J. O. Valderrama and P. A. Robles, “Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids,” Ind. Eng. Chem. Res. 46, 1338-1344 (2007).
[CrossRef]

Rosete-Aguilar, M.

Sanchez-Marin, F. J.

Seddiki, O.

E. F. Borra, O. Seddiki, R. Angel, D. Eisenstein, P. Hickson, K. R. Seddon, and S. P. Worden, “Deposition of metal films on an ionic liquid as a basis for a lunar telescope,” Nature 447, 979-981 (2007).
[CrossRef] [PubMed]

Seddon, K. R.

E. F. Borra, O. Seddiki, R. Angel, D. Eisenstein, P. Hickson, K. R. Seddon, and S. P. Worden, “Deposition of metal films on an ionic liquid as a basis for a lunar telescope,” Nature 447, 979-981 (2007).
[CrossRef] [PubMed]

M. J. Earle, C. M. Gordon, N. V. Plechkova, K. R. Seddon, and T. Welton, “Decolorization of ionic liquids for spectroscopy,” Anal. Chem. 79, 758-763 (2007).
[CrossRef] [PubMed]

Souza, R. F.

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20, 155102(2008).
[CrossRef]

Sroock, A. D.

G. M. Whitesides and A. D. Sroock, “Flexible methods for microfluidics,” Phys. Today 54, 42-48 (2001).
[CrossRef]

Valderrama, J. O.

J. O. Valderrama and P. A. Robles, “Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids,” Ind. Eng. Chem. Res. 46, 1338-1344 (2007).
[CrossRef]

Welton, T.

M. J. Earle, C. M. Gordon, N. V. Plechkova, K. R. Seddon, and T. Welton, “Decolorization of ionic liquids for spectroscopy,” Anal. Chem. 79, 758-763 (2007).
[CrossRef] [PubMed]

Whitesides, G. M.

G. M. Whitesides and A. D. Sroock, “Flexible methods for microfluidics,” Phys. Today 54, 42-48 (2001).
[CrossRef]

Worden, S. P.

E. F. Borra, O. Seddiki, R. Angel, D. Eisenstein, P. Hickson, K. R. Seddon, and S. P. Worden, “Deposition of metal films on an ionic liquid as a basis for a lunar telescope,” Nature 447, 979-981 (2007).
[CrossRef] [PubMed]

Wu, Shin-Tson

Yang, Changhuei

D. Erickson, Changhuei Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photonics Spectra 42, 74-79(2008).

Zhang, De-Ying

Zhao, H.

H. Zhao, S. V. Malhotra, and R. G. Luo, “Preparation and characterization of three room temperature ionic liquids,” Phys. Chem. Liq. 41, 487-492 (2003).
[CrossRef]

Anal. Chem. (1)

M. J. Earle, C. M. Gordon, N. V. Plechkova, K. R. Seddon, and T. Welton, “Decolorization of ionic liquids for spectroscopy,” Anal. Chem. 79, 758-763 (2007).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
[CrossRef]

Ind. Eng. Chem. Res. (1)

J. O. Valderrama and P. A. Robles, “Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids,” Ind. Eng. Chem. Res. 46, 1338-1344 (2007).
[CrossRef]

J. Phys. Condens. Matter (1)

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20, 155102(2008).
[CrossRef]

Nature (1)

E. F. Borra, O. Seddiki, R. Angel, D. Eisenstein, P. Hickson, K. R. Seddon, and S. P. Worden, “Deposition of metal films on an ionic liquid as a basis for a lunar telescope,” Nature 447, 979-981 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Photonics Spectra (1)

D. Erickson, Changhuei Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photonics Spectra 42, 74-79(2008).

Phys. Chem. Liq. (1)

H. Zhao, S. V. Malhotra, and R. G. Luo, “Preparation and characterization of three room temperature ionic liquids,” Phys. Chem. Liq. 41, 487-492 (2003).
[CrossRef]

Phys. Today (1)

G. M. Whitesides and A. D. Sroock, “Flexible methods for microfluidics,” Phys. Today 54, 42-48 (2001).
[CrossRef]

Other (4)

H.P.Herzig, ed., Micro-Optics Elements, Systems and Applications (Taylor and Francis, 1998).

www.varioptic.com. A description of a liquid lens based on an electrowetting phenomenon is given.

F. W. Billmeyer, Textbook of Polymer Science (Wiley, 1984).

http://www.dowcorning.com/content/rubber/silicone-rubber.aspx.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Three passive lenses are shown. Scale is in millimeters. Lenses are not in a plane. Due to this, some of them are out of focus. (b) Water lens. (c) Dynamic hollow lens filled with water. Diameter is 1503 μm .

Fig. 2
Fig. 2

Deviation of spherical lenses profile with reference to the best-fitting circle. (a) and (b) show a passive lens (diameter 566 μm ). (a) Side view, (b) upper view, (c) dynamic lens upper view. Dynamic lens diameter 600 μm .

Fig. 3
Fig. 3

(a) Real image given by a passive lens ( 700 μm diameter) of an object placed 3 m from the lens. Bar size was 7 cm × 1.5 cm . (b) Virtual image given by a dynamic lens ( 2 mm diameter) of a logo warning with a size of 35 cm × 25 cm . (c) Image given by a passive lens ( 1 mm in diameter) of a USAF test chart placed at 5 mm from the lens.

Fig. 4
Fig. 4

(a) Array of water lenses. Each was made with the same amount of liquid ( 0.7 μl ). Diameter of the upper lenses is 1.098 mm . All lenses were in the same plane. (b) Images that each lens gave of letter “H” placed beneath the array. Notice that image given by the lower left lens is slightly blurred. See text for explanation.

Fig. 5
Fig. 5

(a) Behavior of the window–focus distance as a function of refractive index for a dynamic lens. (b) Behavior of the image distance as a function of the object distance for a passive lens.

Tables (2)

Tables Icon

Table 1 Characteristics of Spherical Lenses in Air and in a Cell Filled with Polymer

Tables Icon

Table 2 Refractive Indices of Ionic Liquids

Metrics