Abstract

Incorporation of silver ions into a dye-sensitized poly(vinyl alcohol)/acrylamide photopolymer is observed to give better performance compared to other metal-ion-doped photopolymer holographic recording media. Plane-wave transmission gratings were recorded in the photopolymer films using a He–Ne laser, and various holographic parameters were optimized so as to explore maximum potential of the material for various holographic applications. Silver-doped films showed good energy sensitivity, and gratings recorded in optimized film exhibited a diffraction efficiency of more than 75%. The potential of the material for holographic data storage applications is also studied using peristrophic multiplexing.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gallego, M. Ortuno, C. Neipp, C. Garcia, A. Belendez, and I. Pascual, “Temporal evolution of the angular response of a holographic diffraction grating in PVA/acrylamide photopolymer,” Opt. Express 11, 181-190 (2003).
    [CrossRef] [PubMed]
  2. S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, and D. Levy, “Optimization of an acrylamide based dry film used for holographic recording,” Appl. Opt. 37, 7604-7610 (1998).
    [CrossRef]
  3. M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Fabrication and characterization of methylene blue doped polyvinyl alcohol-polyacrylic acid blend for holographic recording,” Appl. Opt. 43, 3697-3703 (2004).
    [CrossRef] [PubMed]
  4. R. A. Lessard, C. Malouin, R. Changakakoti, and G. Manivannan, “Dye doped polyvinyl alcohol recording materials for holography and nonlinear optics,” Opt. Eng. 32, 665-670 (1993).
    [CrossRef]
  5. S. Blaya, M. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylamide in sol-gel glass,” Appl. Phys. Lett. 84, 4765-4767 (2004).
    [CrossRef]
  6. S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946 (1994).
    [CrossRef]
  7. R. A. Lessard, R. Changakakoti, and G. Manivannan, “Metal-ion-doped polymer systems for real-time holographic recording,” Proc. SPIE 1559, 438-448 (1991).
    [CrossRef]
  8. G. Manivannan, R. Changkakoti, and R. A. Lessard, “Cr (VI) and Fe (III) doped polymer systems as real-time holographic recording materials,” Opt. Eng. 32, 671-676 (1993).
    [CrossRef]
  9. R. Changakakoti, G. Manivannan, A. Singh, and R. A. Lessard, “Ferric chloride doped polyvinyl alcohol for volume hologram recording: a characterization study,” Opt. Eng. 32, 2240-2245 (1993).
    [CrossRef]
  10. K. Sugegawa, S. Sugawara, and K. Murase, “Holographic recording of Fe3+ sensitized photopolymerization,” Electron. Commun. Jpn. 58-c, 132-138 (1975).
  11. B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Copper doped methylene blue sensitized poly (vinyl alcohol)-acrylamide films for stable diffraction efficiency,” Jpn. J. Appl. Phys. 45, 8686-8690 (2006).
    [CrossRef]
  12. B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Effect of chromium doping on the diffraction efficiency of methylene blue sensitized PVA/acrylamide films,” J. Mater. Sci.: Mater. Electron. 20, 216-220 (2009).
    [CrossRef]
  13. K. Curtis, A. Pu, and D. Psaltis, “Method for holographic data storage using peristrophic multiplexing,” Opt. Lett. 19, 993-994 (1994).
    [CrossRef] [PubMed]
  14. A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2828 (1996).
    [CrossRef]
  15. M. Ortuno, A. Marquez, E. Fernandez, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281, 1354-1357(2008).
    [CrossRef]
  16. E. Fernandez, C. Garcia, I. Pascual, M. Ortuno, S. Gallego, and A. Belendez, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
    [CrossRef] [PubMed]
  17. E. Fernandez, M. Ortuno, S. Gallego, C. Garcia, A. Belendez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
    [CrossRef] [PubMed]
  18. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).
  19. M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Complex methylene-blue-sensitized polyvinyl chloride: a polymer matrix for hologram recording,” Appl. Opt. 41, 1984-1988 (2002).
    [CrossRef] [PubMed]
  20. M. Ushamani, N. G. Leenadeenja, K. Sreekumar, C. S. Kartha, and R. Joseph, “Optimization of pH and direct imaging conditions of complexed methylene sensitized poly (vinyl chloride) films,” Bull. Mater. Sci. 26, 343-348 (2003).
    [CrossRef]
  21. H. Meier, “Photochemistry of dyes,” in The Chemistry of Synthetic Dyes, K. Venkataraman, ed. (Academic, 1971), Vol. 4, pp. 494-495.
  22. M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
    [CrossRef]
  23. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
    [CrossRef]
  24. H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A 7, 255-260 (2005).
    [CrossRef]
  25. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
    [CrossRef] [PubMed]

2009

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Effect of chromium doping on the diffraction efficiency of methylene blue sensitized PVA/acrylamide films,” J. Mater. Sci.: Mater. Electron. 20, 216-220 (2009).
[CrossRef]

2008

M. Ortuno, A. Marquez, E. Fernandez, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281, 1354-1357(2008).
[CrossRef]

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

2007

2006

E. Fernandez, C. Garcia, I. Pascual, M. Ortuno, S. Gallego, and A. Belendez, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
[CrossRef] [PubMed]

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Copper doped methylene blue sensitized poly (vinyl alcohol)-acrylamide films for stable diffraction efficiency,” Jpn. J. Appl. Phys. 45, 8686-8690 (2006).
[CrossRef]

2005

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A 7, 255-260 (2005).
[CrossRef]

2004

S. Blaya, M. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylamide in sol-gel glass,” Appl. Phys. Lett. 84, 4765-4767 (2004).
[CrossRef]

M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Fabrication and characterization of methylene blue doped polyvinyl alcohol-polyacrylic acid blend for holographic recording,” Appl. Opt. 43, 3697-3703 (2004).
[CrossRef] [PubMed]

2003

S. Gallego, M. Ortuno, C. Neipp, C. Garcia, A. Belendez, and I. Pascual, “Temporal evolution of the angular response of a holographic diffraction grating in PVA/acrylamide photopolymer,” Opt. Express 11, 181-190 (2003).
[CrossRef] [PubMed]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

M. Ushamani, N. G. Leenadeenja, K. Sreekumar, C. S. Kartha, and R. Joseph, “Optimization of pH and direct imaging conditions of complexed methylene sensitized poly (vinyl chloride) films,” Bull. Mater. Sci. 26, 343-348 (2003).
[CrossRef]

2002

1998

1996

A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
[CrossRef] [PubMed]

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2828 (1996).
[CrossRef]

1994

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946 (1994).
[CrossRef]

K. Curtis, A. Pu, and D. Psaltis, “Method for holographic data storage using peristrophic multiplexing,” Opt. Lett. 19, 993-994 (1994).
[CrossRef] [PubMed]

1993

G. Manivannan, R. Changkakoti, and R. A. Lessard, “Cr (VI) and Fe (III) doped polymer systems as real-time holographic recording materials,” Opt. Eng. 32, 671-676 (1993).
[CrossRef]

R. Changakakoti, G. Manivannan, A. Singh, and R. A. Lessard, “Ferric chloride doped polyvinyl alcohol for volume hologram recording: a characterization study,” Opt. Eng. 32, 2240-2245 (1993).
[CrossRef]

R. A. Lessard, C. Malouin, R. Changakakoti, and G. Manivannan, “Dye doped polyvinyl alcohol recording materials for holography and nonlinear optics,” Opt. Eng. 32, 665-670 (1993).
[CrossRef]

1991

R. A. Lessard, R. Changakakoti, and G. Manivannan, “Metal-ion-doped polymer systems for real-time holographic recording,” Proc. SPIE 1559, 438-448 (1991).
[CrossRef]

1975

K. Sugegawa, S. Sugawara, and K. Murase, “Holographic recording of Fe3+ sensitized photopolymerization,” Electron. Commun. Jpn. 58-c, 132-138 (1975).

Acebal, P.

S. Blaya, M. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylamide in sol-gel glass,” Appl. Phys. Lett. 84, 4765-4767 (2004).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Belendez, A.

Blaya, S.

S. Blaya, M. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylamide in sol-gel glass,” Appl. Phys. Lett. 84, 4765-4767 (2004).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, and D. Levy, “Optimization of an acrylamide based dry film used for holographic recording,” Appl. Opt. 37, 7604-7610 (1998).
[CrossRef]

Carretero, L.

S. Blaya, M. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylamide in sol-gel glass,” Appl. Phys. Lett. 84, 4765-4767 (2004).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, and D. Levy, “Optimization of an acrylamide based dry film used for holographic recording,” Appl. Opt. 37, 7604-7610 (1998).
[CrossRef]

Changakakoti, R.

R. Changakakoti, G. Manivannan, A. Singh, and R. A. Lessard, “Ferric chloride doped polyvinyl alcohol for volume hologram recording: a characterization study,” Opt. Eng. 32, 2240-2245 (1993).
[CrossRef]

R. A. Lessard, C. Malouin, R. Changakakoti, and G. Manivannan, “Dye doped polyvinyl alcohol recording materials for holography and nonlinear optics,” Opt. Eng. 32, 665-670 (1993).
[CrossRef]

R. A. Lessard, R. Changakakoti, and G. Manivannan, “Metal-ion-doped polymer systems for real-time holographic recording,” Proc. SPIE 1559, 438-448 (1991).
[CrossRef]

Changkakoti, R.

G. Manivannan, R. Changkakoti, and R. A. Lessard, “Cr (VI) and Fe (III) doped polymer systems as real-time holographic recording materials,” Opt. Eng. 32, 671-676 (1993).
[CrossRef]

Coufal, H. J.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).

Curtis, K.

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2828 (1996).
[CrossRef]

K. Curtis, A. Pu, and D. Psaltis, “Method for holographic data storage using peristrophic multiplexing,” Opt. Lett. 19, 993-994 (1994).
[CrossRef] [PubMed]

Fernandez, E.

Fimia, A.

S. Blaya, M. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylamide in sol-gel glass,” Appl. Phys. Lett. 84, 4765-4767 (2004).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, and D. Levy, “Optimization of an acrylamide based dry film used for holographic recording,” Appl. Opt. 37, 7604-7610 (1998).
[CrossRef]

Gallego, S.

Garcia, C.

Gleeson, M. R.

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

John, B. M.

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Effect of chromium doping on the diffraction efficiency of methylene blue sensitized PVA/acrylamide films,” J. Mater. Sci.: Mater. Electron. 20, 216-220 (2009).
[CrossRef]

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Copper doped methylene blue sensitized poly (vinyl alcohol)-acrylamide films for stable diffraction efficiency,” Jpn. J. Appl. Phys. 45, 8686-8690 (2006).
[CrossRef]

Joseph, R.

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Effect of chromium doping on the diffraction efficiency of methylene blue sensitized PVA/acrylamide films,” J. Mater. Sci.: Mater. Electron. 20, 216-220 (2009).
[CrossRef]

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Copper doped methylene blue sensitized poly (vinyl alcohol)-acrylamide films for stable diffraction efficiency,” Jpn. J. Appl. Phys. 45, 8686-8690 (2006).
[CrossRef]

M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Fabrication and characterization of methylene blue doped polyvinyl alcohol-polyacrylic acid blend for holographic recording,” Appl. Opt. 43, 3697-3703 (2004).
[CrossRef] [PubMed]

M. Ushamani, N. G. Leenadeenja, K. Sreekumar, C. S. Kartha, and R. Joseph, “Optimization of pH and direct imaging conditions of complexed methylene sensitized poly (vinyl chloride) films,” Bull. Mater. Sci. 26, 343-348 (2003).
[CrossRef]

M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Complex methylene-blue-sensitized polyvinyl chloride: a polymer matrix for hologram recording,” Appl. Opt. 41, 1984-1988 (2002).
[CrossRef] [PubMed]

Kartha, C. S.

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Effect of chromium doping on the diffraction efficiency of methylene blue sensitized PVA/acrylamide films,” J. Mater. Sci.: Mater. Electron. 20, 216-220 (2009).
[CrossRef]

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Copper doped methylene blue sensitized poly (vinyl alcohol)-acrylamide films for stable diffraction efficiency,” Jpn. J. Appl. Phys. 45, 8686-8690 (2006).
[CrossRef]

M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Fabrication and characterization of methylene blue doped polyvinyl alcohol-polyacrylic acid blend for holographic recording,” Appl. Opt. 43, 3697-3703 (2004).
[CrossRef] [PubMed]

M. Ushamani, N. G. Leenadeenja, K. Sreekumar, C. S. Kartha, and R. Joseph, “Optimization of pH and direct imaging conditions of complexed methylene sensitized poly (vinyl chloride) films,” Bull. Mater. Sci. 26, 343-348 (2003).
[CrossRef]

M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Complex methylene-blue-sensitized polyvinyl chloride: a polymer matrix for hologram recording,” Appl. Opt. 41, 1984-1988 (2002).
[CrossRef] [PubMed]

Leclere, P. E. L. G.

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946 (1994).
[CrossRef]

Leenadeenja, N. G.

M. Ushamani, N. G. Leenadeenja, K. Sreekumar, C. S. Kartha, and R. Joseph, “Optimization of pH and direct imaging conditions of complexed methylene sensitized poly (vinyl chloride) films,” Bull. Mater. Sci. 26, 343-348 (2003).
[CrossRef]

Lessard, R. A.

R. Changakakoti, G. Manivannan, A. Singh, and R. A. Lessard, “Ferric chloride doped polyvinyl alcohol for volume hologram recording: a characterization study,” Opt. Eng. 32, 2240-2245 (1993).
[CrossRef]

R. A. Lessard, C. Malouin, R. Changakakoti, and G. Manivannan, “Dye doped polyvinyl alcohol recording materials for holography and nonlinear optics,” Opt. Eng. 32, 665-670 (1993).
[CrossRef]

G. Manivannan, R. Changkakoti, and R. A. Lessard, “Cr (VI) and Fe (III) doped polymer systems as real-time holographic recording materials,” Opt. Eng. 32, 671-676 (1993).
[CrossRef]

R. A. Lessard, R. Changakakoti, and G. Manivannan, “Metal-ion-doped polymer systems for real-time holographic recording,” Proc. SPIE 1559, 438-448 (1991).
[CrossRef]

Levy, D.

Lion, Y. F.

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946 (1994).
[CrossRef]

Liu, S.

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

Madrigal, R. F.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, and D. Levy, “Optimization of an acrylamide based dry film used for holographic recording,” Appl. Opt. 37, 7604-7610 (1998).
[CrossRef]

Mallavia, R.

Malouin, C.

R. A. Lessard, C. Malouin, R. Changakakoti, and G. Manivannan, “Dye doped polyvinyl alcohol recording materials for holography and nonlinear optics,” Opt. Eng. 32, 665-670 (1993).
[CrossRef]

Manivannan, G.

R. A. Lessard, C. Malouin, R. Changakakoti, and G. Manivannan, “Dye doped polyvinyl alcohol recording materials for holography and nonlinear optics,” Opt. Eng. 32, 665-670 (1993).
[CrossRef]

G. Manivannan, R. Changkakoti, and R. A. Lessard, “Cr (VI) and Fe (III) doped polymer systems as real-time holographic recording materials,” Opt. Eng. 32, 671-676 (1993).
[CrossRef]

R. Changakakoti, G. Manivannan, A. Singh, and R. A. Lessard, “Ferric chloride doped polyvinyl alcohol for volume hologram recording: a characterization study,” Opt. Eng. 32, 2240-2245 (1993).
[CrossRef]

R. A. Lessard, R. Changakakoti, and G. Manivannan, “Metal-ion-doped polymer systems for real-time holographic recording,” Proc. SPIE 1559, 438-448 (1991).
[CrossRef]

Marquez, A.

M. Ortuno, A. Marquez, E. Fernandez, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281, 1354-1357(2008).
[CrossRef]

Martin, S.

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A 7, 255-260 (2005).
[CrossRef]

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946 (1994).
[CrossRef]

McGinn, C.

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A 7, 255-260 (2005).
[CrossRef]

Meier, H.

H. Meier, “Photochemistry of dyes,” in The Chemistry of Synthetic Dyes, K. Venkataraman, ed. (Academic, 1971), Vol. 4, pp. 494-495.

Murase, K.

K. Sugegawa, S. Sugawara, and K. Murase, “Holographic recording of Fe3+ sensitized photopolymerization,” Electron. Commun. Jpn. 58-c, 132-138 (1975).

Murciano, M.

S. Blaya, M. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylamide in sol-gel glass,” Appl. Phys. Lett. 84, 4765-4767 (2004).
[CrossRef]

Naydenova, I.

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A 7, 255-260 (2005).
[CrossRef]

Neipp, C.

O'Duill, S.

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

Ortuno, M.

Pascual, I.

Psaltis, D.

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2828 (1996).
[CrossRef]

A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
[CrossRef] [PubMed]

K. Curtis, A. Pu, and D. Psaltis, “Method for holographic data storage using peristrophic multiplexing,” Opt. Lett. 19, 993-994 (1994).
[CrossRef] [PubMed]

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).

Pu, A.

Renotte, Y. L. M.

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946 (1994).
[CrossRef]

Sheridan, J. T.

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

Sherif, H.

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A 7, 255-260 (2005).
[CrossRef]

Sincerbox, G. T.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).

Singh, A.

R. Changakakoti, G. Manivannan, A. Singh, and R. A. Lessard, “Ferric chloride doped polyvinyl alcohol for volume hologram recording: a characterization study,” Opt. Eng. 32, 2240-2245 (1993).
[CrossRef]

Sreekumar, K.

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Effect of chromium doping on the diffraction efficiency of methylene blue sensitized PVA/acrylamide films,” J. Mater. Sci.: Mater. Electron. 20, 216-220 (2009).
[CrossRef]

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Copper doped methylene blue sensitized poly (vinyl alcohol)-acrylamide films for stable diffraction efficiency,” Jpn. J. Appl. Phys. 45, 8686-8690 (2006).
[CrossRef]

M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Fabrication and characterization of methylene blue doped polyvinyl alcohol-polyacrylic acid blend for holographic recording,” Appl. Opt. 43, 3697-3703 (2004).
[CrossRef] [PubMed]

M. Ushamani, N. G. Leenadeenja, K. Sreekumar, C. S. Kartha, and R. Joseph, “Optimization of pH and direct imaging conditions of complexed methylene sensitized poly (vinyl chloride) films,” Bull. Mater. Sci. 26, 343-348 (2003).
[CrossRef]

M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Complex methylene-blue-sensitized polyvinyl chloride: a polymer matrix for hologram recording,” Appl. Opt. 41, 1984-1988 (2002).
[CrossRef] [PubMed]

Sugawara, S.

K. Sugegawa, S. Sugawara, and K. Murase, “Holographic recording of Fe3+ sensitized photopolymerization,” Electron. Commun. Jpn. 58-c, 132-138 (1975).

Sugegawa, K.

K. Sugegawa, S. Sugawara, and K. Murase, “Holographic recording of Fe3+ sensitized photopolymerization,” Electron. Commun. Jpn. 58-c, 132-138 (1975).

Toal, V.

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A 7, 255-260 (2005).
[CrossRef]

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946 (1994).
[CrossRef]

Ulibarrena, M.

S. Blaya, M. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylamide in sol-gel glass,” Appl. Phys. Lett. 84, 4765-4767 (2004).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, and D. Levy, “Optimization of an acrylamide based dry film used for holographic recording,” Appl. Opt. 37, 7604-7610 (1998).
[CrossRef]

Ushamani, M.

Appl. Opt.

Appl. Phys. B

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Appl. Phys. Lett.

S. Blaya, M. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylamide in sol-gel glass,” Appl. Phys. Lett. 84, 4765-4767 (2004).
[CrossRef]

Bull. Mater. Sci.

M. Ushamani, N. G. Leenadeenja, K. Sreekumar, C. S. Kartha, and R. Joseph, “Optimization of pH and direct imaging conditions of complexed methylene sensitized poly (vinyl chloride) films,” Bull. Mater. Sci. 26, 343-348 (2003).
[CrossRef]

Electron. Commun. Jpn.

K. Sugegawa, S. Sugawara, and K. Murase, “Holographic recording of Fe3+ sensitized photopolymerization,” Electron. Commun. Jpn. 58-c, 132-138 (1975).

J. Appl. Phys.

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

J. Mater. Sci.: Mater. Electron.

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Effect of chromium doping on the diffraction efficiency of methylene blue sensitized PVA/acrylamide films,” J. Mater. Sci.: Mater. Electron. 20, 216-220 (2009).
[CrossRef]

J. Opt. A

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A 7, 255-260 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Copper doped methylene blue sensitized poly (vinyl alcohol)-acrylamide films for stable diffraction efficiency,” Jpn. J. Appl. Phys. 45, 8686-8690 (2006).
[CrossRef]

Opt. Commun.

M. Ortuno, A. Marquez, E. Fernandez, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281, 1354-1357(2008).
[CrossRef]

Opt. Eng.

R. A. Lessard, C. Malouin, R. Changakakoti, and G. Manivannan, “Dye doped polyvinyl alcohol recording materials for holography and nonlinear optics,” Opt. Eng. 32, 665-670 (1993).
[CrossRef]

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2828 (1996).
[CrossRef]

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946 (1994).
[CrossRef]

G. Manivannan, R. Changkakoti, and R. A. Lessard, “Cr (VI) and Fe (III) doped polymer systems as real-time holographic recording materials,” Opt. Eng. 32, 671-676 (1993).
[CrossRef]

R. Changakakoti, G. Manivannan, A. Singh, and R. A. Lessard, “Ferric chloride doped polyvinyl alcohol for volume hologram recording: a characterization study,” Opt. Eng. 32, 2240-2245 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

R. A. Lessard, R. Changakakoti, and G. Manivannan, “Metal-ion-doped polymer systems for real-time holographic recording,” Proc. SPIE 1559, 438-448 (1991).
[CrossRef]

Other

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).

H. Meier, “Photochemistry of dyes,” in The Chemistry of Synthetic Dyes, K. Venkataraman, ed. (Academic, 1971), Vol. 4, pp. 494-495.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Absorption spectra of unexposed films.

Fig. 2
Fig. 2

Relative transmittance versus exposure energy.

Fig. 3
Fig. 3

Grating recording setup.

Fig. 4
Fig. 4

DE versus exposure energy.

Fig. 5
Fig. 5

DE versus Ag + concentration.

Fig. 6
Fig. 6

Change in RI with Ag + concentration.

Fig. 7
Fig. 7

DE versus spatial frequency.

Fig. 8
Fig. 8

DE versus beam ratio.

Fig. 9
Fig. 9

DE on storage.

Fig. 10
Fig. 10

DE on aging.

Fig. 11
Fig. 11

Transmission hologram recorded in the optimized film.

Fig. 12
Fig. 12

Exposure-scheduling scheme.

Fig. 13
Fig. 13

DE versus grating number.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

MB + h ν MB * 1 .
MB * 1 MB * 3 .
MB * 3 + TEA MB · + TEA · + .
TEA · + TEA · + H + .
MB · + H + MBH · + ,
MBH · + + TEA MBH + TEA · + .
TEA · + AA AA 1 · .
AA 1 · + AA AA 2 · ,
AA 2 · + AA AA 3 · ,
AA i · + AA AA i + 1 · .
AA k · + TEA · P i ,
AA k · + AA l · P i .
M # = i = 1 M η i 1 / 2 ,

Metrics