Abstract

We present a numerical model of an Er3+-Tm3+-Pr3+ codoped fiber amplifier pumped with an 800nm laser for the first time to the best of our knowledge. The rate and power propagation equations are solved numerically, and the dependence of the gains at 1310, 1470, and 1530nm windows on the active ion concentrations and fiber length are calculated. The results show that with pump power of 20mW, when Pr3+-Tm3+-Er3+ concentrations are around 2.0×1024, 2.0×1024, and 2.26×1024 (ions/m3), respectively, the signals at 1310, 1470, and 1530nm windows may be equally amplified in the active fiber with a length of 1.3m.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Naito, T. Tanaka, and K. Torii, “A broadband distributed Raman amplifier for bandwidth beyond 100 nm,” Optical Fiber Conference (OSA, 2002), pp. 116-117.
  2. C. Jiang and W. Hu, “Multiband-fiber Raman amplifier,” 9th Opto-Electronics and Communications Conference and 3rd International Conference on Optical Internet (Pacifica, 2004),
    [PubMed]
  3. C. R. Giles and E. Desuvire, “Modeling erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 9, 271-283 (1991).
    [CrossRef]
  4. C.-H. Yeh, C.-C. Lee, and S. Chi, “120 nm Bandwidth erbium-doped fiber amplifier in parallel configuration,” IEEE Photonics Technol. Lett. 16, 1637-1639 (2004).
    [CrossRef]
  5. Y. B. Lu, P. L. Chu, A. Alphones, and P. Shum, “A 105 nmUltrawide-band gain-flattened amplifier combining C- and L-band dual-core EDFAs in a parallel configuration,” IEEE Photonics Technol. Lett. 16, 1640-1642 (2004).
    [CrossRef]
  6. E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 16, 777-779 (2004).
    [CrossRef]
  7. R. M. Percival and J. R. Williams, “Highly efficient 1064 μm upconversion pumped 1.47 μm thulium doped fluoride fiber amplifier,” Electron. Lett. 30, 1684-1685 (1994).
    [CrossRef]
  8. T. Kasamatsu, Y. Yano, and T. Ono, “1.49 um-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems,” J. Lightwave Technol. 20, 1826-1838 (2002).
    [CrossRef]
  9. Y. Ohishi, T. Kanamori, and T. Nishi, “Concentration effect on gain of Pr3+-doped fluoride fiber amplifier for 1.3 μm,” IEEE Photonics Technol. Lett. 4, 1338-1340 (1992).
    [CrossRef]
  10. L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fiber,” Opt. Express 12, 2429-2434 (2004).
    [CrossRef] [PubMed]
  11. H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ codoped silica fiber,” Chem. Phys. Lett. 367,507-509 (2003).
    [CrossRef]
  12. D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B 39, 80-90 (1989).
    [CrossRef]
  13. S. Tanabe, K. Suzuki, N. Soga, and T. Hanada, “Mechanisms and concentration dependence of Tm3+ blue and Er3+ green up-conversion in co-doped glasses by red-laser pumping,” J. Lumin. 65, 247-253 (1995).
    [CrossRef]
  14. X. Zou, A. Shikida, H. Yanagita, and H. Toratani, “Mechanisms of upconversion fluorescences in Er3+, Tm3+ codoped fluorozircoaluminate glasses,” J. Non-Cryst. Solids 181, 100-109 (1995).
    [CrossRef]
  15. W. Lozano, C. B. de Araujo, and Y. Messaddeq, “Enhanced frequency upconversion in Er3+ doped fluoroindate glass due to energy transfer from Tm3+,” J. Non-Cryst. Solids 311, 318-322 (2002).
    [CrossRef]
  16. T. J. Whitley and R. Wyatt, “Alternative Gaussians spot size polynomial for use with doped fiber amplifier,” IEEE Photonics Technol. Lett. 5, 1325-1327 (1993).
    [CrossRef]
  17. F. Di Pasquale and M. Federighi, “Improved gain characteristics in high concentration Er3+/Yb3+ codoped glass waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2127-2131 (1994).
    [CrossRef]
  18. M. Karasek, “Optimum design of Er3+-Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699-1705 (1997).
    [CrossRef]
  19. E. Yahel and A. A. Handy, “Modeling and optimization of short Er3+-Yb3+ codoped fiber lasers,” IEEE J. Quantum Electron. 39, 1444-1451 (2003).
    [CrossRef]
  20. L. Jin, D. Ma, Y. Ding, and C. Jiang, “theoretical analysis of gain characteristics of Er3+-Tm3+-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 18, 460-462 (2006).
    [CrossRef]
  21. F. X. Gan, Optical and Spectroscopic Properties of Glasses (Shanghai Science and Technology Press, 1992), p. 245.
  22. Y. Hu, S. Jiang, and G. Sorbello, “Numerical analysis of the population dynamics and determination of the upconversion coefficients in a new erbium-doped telluride glass,” J. Opt. Soc. Am. B 18, 1928-1934 (2001).
    [CrossRef]
  23. S. Shen, A. Jha, X. Liu, and M. Nataly, “Telluride glasses for broadband amplifiers and integrated optics”, J. Am. Ceram. Soc. 85, 1391-1395 (2002).
    [CrossRef]

2006

L. Jin, D. Ma, Y. Ding, and C. Jiang, “theoretical analysis of gain characteristics of Er3+-Tm3+-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 18, 460-462 (2006).
[CrossRef]

2004

C.-H. Yeh, C.-C. Lee, and S. Chi, “120 nm Bandwidth erbium-doped fiber amplifier in parallel configuration,” IEEE Photonics Technol. Lett. 16, 1637-1639 (2004).
[CrossRef]

Y. B. Lu, P. L. Chu, A. Alphones, and P. Shum, “A 105 nmUltrawide-band gain-flattened amplifier combining C- and L-band dual-core EDFAs in a parallel configuration,” IEEE Photonics Technol. Lett. 16, 1640-1642 (2004).
[CrossRef]

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 16, 777-779 (2004).
[CrossRef]

L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fiber,” Opt. Express 12, 2429-2434 (2004).
[CrossRef] [PubMed]

2003

H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ codoped silica fiber,” Chem. Phys. Lett. 367,507-509 (2003).
[CrossRef]

E. Yahel and A. A. Handy, “Modeling and optimization of short Er3+-Yb3+ codoped fiber lasers,” IEEE J. Quantum Electron. 39, 1444-1451 (2003).
[CrossRef]

2002

W. Lozano, C. B. de Araujo, and Y. Messaddeq, “Enhanced frequency upconversion in Er3+ doped fluoroindate glass due to energy transfer from Tm3+,” J. Non-Cryst. Solids 311, 318-322 (2002).
[CrossRef]

T. Kasamatsu, Y. Yano, and T. Ono, “1.49 um-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems,” J. Lightwave Technol. 20, 1826-1838 (2002).
[CrossRef]

S. Shen, A. Jha, X. Liu, and M. Nataly, “Telluride glasses for broadband amplifiers and integrated optics”, J. Am. Ceram. Soc. 85, 1391-1395 (2002).
[CrossRef]

2001

1997

M. Karasek, “Optimum design of Er3+-Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699-1705 (1997).
[CrossRef]

1995

S. Tanabe, K. Suzuki, N. Soga, and T. Hanada, “Mechanisms and concentration dependence of Tm3+ blue and Er3+ green up-conversion in co-doped glasses by red-laser pumping,” J. Lumin. 65, 247-253 (1995).
[CrossRef]

X. Zou, A. Shikida, H. Yanagita, and H. Toratani, “Mechanisms of upconversion fluorescences in Er3+, Tm3+ codoped fluorozircoaluminate glasses,” J. Non-Cryst. Solids 181, 100-109 (1995).
[CrossRef]

1994

F. Di Pasquale and M. Federighi, “Improved gain characteristics in high concentration Er3+/Yb3+ codoped glass waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2127-2131 (1994).
[CrossRef]

R. M. Percival and J. R. Williams, “Highly efficient 1064 μm upconversion pumped 1.47 μm thulium doped fluoride fiber amplifier,” Electron. Lett. 30, 1684-1685 (1994).
[CrossRef]

1993

T. J. Whitley and R. Wyatt, “Alternative Gaussians spot size polynomial for use with doped fiber amplifier,” IEEE Photonics Technol. Lett. 5, 1325-1327 (1993).
[CrossRef]

1992

Y. Ohishi, T. Kanamori, and T. Nishi, “Concentration effect on gain of Pr3+-doped fluoride fiber amplifier for 1.3 μm,” IEEE Photonics Technol. Lett. 4, 1338-1340 (1992).
[CrossRef]

1991

C. R. Giles and E. Desuvire, “Modeling erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

1989

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B 39, 80-90 (1989).
[CrossRef]

Adam, J. L.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B 39, 80-90 (1989).
[CrossRef]

Alphones, A.

Y. B. Lu, P. L. Chu, A. Alphones, and P. Shum, “A 105 nmUltrawide-band gain-flattened amplifier combining C- and L-band dual-core EDFAs in a parallel configuration,” IEEE Photonics Technol. Lett. 16, 1640-1642 (2004).
[CrossRef]

Caponi, R.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Chi, S.

C.-H. Yeh, C.-C. Lee, and S. Chi, “120 nm Bandwidth erbium-doped fiber amplifier in parallel configuration,” IEEE Photonics Technol. Lett. 16, 1637-1639 (2004).
[CrossRef]

Chu, P. L.

Y. B. Lu, P. L. Chu, A. Alphones, and P. Shum, “A 105 nmUltrawide-band gain-flattened amplifier combining C- and L-band dual-core EDFAs in a parallel configuration,” IEEE Photonics Technol. Lett. 16, 1640-1642 (2004).
[CrossRef]

de Araujo, C. B.

W. Lozano, C. B. de Araujo, and Y. Messaddeq, “Enhanced frequency upconversion in Er3+ doped fluoroindate glass due to energy transfer from Tm3+,” J. Non-Cryst. Solids 311, 318-322 (2002).
[CrossRef]

Desuvire, E.

C. R. Giles and E. Desuvire, “Modeling erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

Di Pasquale, F.

F. Di Pasquale and M. Federighi, “Improved gain characteristics in high concentration Er3+/Yb3+ codoped glass waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2127-2131 (1994).
[CrossRef]

Ding, Y.

L. Jin, D. Ma, Y. Ding, and C. Jiang, “theoretical analysis of gain characteristics of Er3+-Tm3+-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 18, 460-462 (2006).
[CrossRef]

Federighi, M.

F. Di Pasquale and M. Federighi, “Improved gain characteristics in high concentration Er3+/Yb3+ codoped glass waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2127-2131 (1994).
[CrossRef]

Gan, F. X.

F. X. Gan, Optical and Spectroscopic Properties of Glasses (Shanghai Science and Technology Press, 1992), p. 245.

Giles, C. R.

C. R. Giles and E. Desuvire, “Modeling erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

Han, S. R.

H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ codoped silica fiber,” Chem. Phys. Lett. 367,507-509 (2003).
[CrossRef]

Hanada, T.

S. Tanabe, K. Suzuki, N. Soga, and T. Hanada, “Mechanisms and concentration dependence of Tm3+ blue and Er3+ green up-conversion in co-doped glasses by red-laser pumping,” J. Lumin. 65, 247-253 (1995).
[CrossRef]

Handy, A. A.

E. Yahel and A. A. Handy, “Modeling and optimization of short Er3+-Yb3+ codoped fiber lasers,” IEEE J. Quantum Electron. 39, 1444-1451 (2003).
[CrossRef]

Hu, W.

C. Jiang and W. Hu, “Multiband-fiber Raman amplifier,” 9th Opto-Electronics and Communications Conference and 3rd International Conference on Optical Internet (Pacifica, 2004),
[PubMed]

Hu, Y.

Huang, L.

Jeong, H.

H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ codoped silica fiber,” Chem. Phys. Lett. 367,507-509 (2003).
[CrossRef]

Jha, A.

L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fiber,” Opt. Express 12, 2429-2434 (2004).
[CrossRef] [PubMed]

S. Shen, A. Jha, X. Liu, and M. Nataly, “Telluride glasses for broadband amplifiers and integrated optics”, J. Am. Ceram. Soc. 85, 1391-1395 (2002).
[CrossRef]

Jiang, C.

L. Jin, D. Ma, Y. Ding, and C. Jiang, “theoretical analysis of gain characteristics of Er3+-Tm3+-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 18, 460-462 (2006).
[CrossRef]

C. Jiang and W. Hu, “Multiband-fiber Raman amplifier,” 9th Opto-Electronics and Communications Conference and 3rd International Conference on Optical Internet (Pacifica, 2004),
[PubMed]

Jiang, S.

Jin, L.

L. Jin, D. Ma, Y. Ding, and C. Jiang, “theoretical analysis of gain characteristics of Er3+-Tm3+-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 18, 460-462 (2006).
[CrossRef]

Kanamori, T.

Y. Ohishi, T. Kanamori, and T. Nishi, “Concentration effect on gain of Pr3+-doped fluoride fiber amplifier for 1.3 μm,” IEEE Photonics Technol. Lett. 4, 1338-1340 (1992).
[CrossRef]

Karasek, M.

M. Karasek, “Optimum design of Er3+-Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699-1705 (1997).
[CrossRef]

Kasamatsu, T.

Lee, C.-C.

C.-H. Yeh, C.-C. Lee, and S. Chi, “120 nm Bandwidth erbium-doped fiber amplifier in parallel configuration,” IEEE Photonics Technol. Lett. 16, 1637-1639 (2004).
[CrossRef]

Liu, X.

L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fiber,” Opt. Express 12, 2429-2434 (2004).
[CrossRef] [PubMed]

S. Shen, A. Jha, X. Liu, and M. Nataly, “Telluride glasses for broadband amplifiers and integrated optics”, J. Am. Ceram. Soc. 85, 1391-1395 (2002).
[CrossRef]

Lozano, W.

W. Lozano, C. B. de Araujo, and Y. Messaddeq, “Enhanced frequency upconversion in Er3+ doped fluoroindate glass due to energy transfer from Tm3+,” J. Non-Cryst. Solids 311, 318-322 (2002).
[CrossRef]

Lu, Y. B.

Y. B. Lu, P. L. Chu, A. Alphones, and P. Shum, “A 105 nmUltrawide-band gain-flattened amplifier combining C- and L-band dual-core EDFAs in a parallel configuration,” IEEE Photonics Technol. Lett. 16, 1640-1642 (2004).
[CrossRef]

Ma, D.

L. Jin, D. Ma, Y. Ding, and C. Jiang, “theoretical analysis of gain characteristics of Er3+-Tm3+-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 18, 460-462 (2006).
[CrossRef]

Madigou, V.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B 39, 80-90 (1989).
[CrossRef]

Messaddeq, Y.

W. Lozano, C. B. de Araujo, and Y. Messaddeq, “Enhanced frequency upconversion in Er3+ doped fluoroindate glass due to energy transfer from Tm3+,” J. Non-Cryst. Solids 311, 318-322 (2002).
[CrossRef]

Morse, T. F.

H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ codoped silica fiber,” Chem. Phys. Lett. 367,507-509 (2003).
[CrossRef]

Naito, T.

T. Naito, T. Tanaka, and K. Torii, “A broadband distributed Raman amplifier for bandwidth beyond 100 nm,” Optical Fiber Conference (OSA, 2002), pp. 116-117.

Nataly, M.

S. Shen, A. Jha, X. Liu, and M. Nataly, “Telluride glasses for broadband amplifiers and integrated optics”, J. Am. Ceram. Soc. 85, 1391-1395 (2002).
[CrossRef]

Ng, L. N.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Nilsson, J.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Nishi, T.

Y. Ohishi, T. Kanamori, and T. Nishi, “Concentration effect on gain of Pr3+-doped fluoride fiber amplifier for 1.3 μm,” IEEE Photonics Technol. Lett. 4, 1338-1340 (1992).
[CrossRef]

Oh, K.

H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ codoped silica fiber,” Chem. Phys. Lett. 367,507-509 (2003).
[CrossRef]

Ohishi, Y.

Y. Ohishi, T. Kanamori, and T. Nishi, “Concentration effect on gain of Pr3+-doped fluoride fiber amplifier for 1.3 μm,” IEEE Photonics Technol. Lett. 4, 1338-1340 (1992).
[CrossRef]

Ono, T.

Pagano, A.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Percival, R. M.

R. M. Percival and J. R. Williams, “Highly efficient 1064 μm upconversion pumped 1.47 μm thulium doped fluoride fiber amplifier,” Electron. Lett. 30, 1684-1685 (1994).
[CrossRef]

Petrin, R. R.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B 39, 80-90 (1989).
[CrossRef]

Potenza, M.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Shen, S.

L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fiber,” Opt. Express 12, 2429-2434 (2004).
[CrossRef] [PubMed]

S. Shen, A. Jha, X. Liu, and M. Nataly, “Telluride glasses for broadband amplifiers and integrated optics”, J. Am. Ceram. Soc. 85, 1391-1395 (2002).
[CrossRef]

Shikida, A.

X. Zou, A. Shikida, H. Yanagita, and H. Toratani, “Mechanisms of upconversion fluorescences in Er3+, Tm3+ codoped fluorozircoaluminate glasses,” J. Non-Cryst. Solids 181, 100-109 (1995).
[CrossRef]

Shum, P.

Y. B. Lu, P. L. Chu, A. Alphones, and P. Shum, “A 105 nmUltrawide-band gain-flattened amplifier combining C- and L-band dual-core EDFAs in a parallel configuration,” IEEE Photonics Technol. Lett. 16, 1640-1642 (2004).
[CrossRef]

Sibley, W. A.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B 39, 80-90 (1989).
[CrossRef]

Soga, N.

S. Tanabe, K. Suzuki, N. Soga, and T. Hanada, “Mechanisms and concentration dependence of Tm3+ blue and Er3+ green up-conversion in co-doped glasses by red-laser pumping,” J. Lumin. 65, 247-253 (1995).
[CrossRef]

Sorbello, G.

Sordo, B.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Suscavage, M. J.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B 39, 80-90 (1989).
[CrossRef]

Suzuki, K.

S. Tanabe, K. Suzuki, N. Soga, and T. Hanada, “Mechanisms and concentration dependence of Tm3+ blue and Er3+ green up-conversion in co-doped glasses by red-laser pumping,” J. Lumin. 65, 247-253 (1995).
[CrossRef]

Tanabe, S.

S. Tanabe, K. Suzuki, N. Soga, and T. Hanada, “Mechanisms and concentration dependence of Tm3+ blue and Er3+ green up-conversion in co-doped glasses by red-laser pumping,” J. Lumin. 65, 247-253 (1995).
[CrossRef]

Tanaka, T.

T. Naito, T. Tanaka, and K. Torii, “A broadband distributed Raman amplifier for bandwidth beyond 100 nm,” Optical Fiber Conference (OSA, 2002), pp. 116-117.

Taylor, E. R. M.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Toratani, H.

X. Zou, A. Shikida, H. Yanagita, and H. Toratani, “Mechanisms of upconversion fluorescences in Er3+, Tm3+ codoped fluorozircoaluminate glasses,” J. Non-Cryst. Solids 181, 100-109 (1995).
[CrossRef]

Torii, K.

T. Naito, T. Tanaka, and K. Torii, “A broadband distributed Raman amplifier for bandwidth beyond 100 nm,” Optical Fiber Conference (OSA, 2002), pp. 116-117.

Whitley, T. J.

T. J. Whitley and R. Wyatt, “Alternative Gaussians spot size polynomial for use with doped fiber amplifier,” IEEE Photonics Technol. Lett. 5, 1325-1327 (1993).
[CrossRef]

Williams, J. R.

R. M. Percival and J. R. Williams, “Highly efficient 1064 μm upconversion pumped 1.47 μm thulium doped fluoride fiber amplifier,” Electron. Lett. 30, 1684-1685 (1994).
[CrossRef]

Wyatt, R.

T. J. Whitley and R. Wyatt, “Alternative Gaussians spot size polynomial for use with doped fiber amplifier,” IEEE Photonics Technol. Lett. 5, 1325-1327 (1993).
[CrossRef]

Yahel, E.

E. Yahel and A. A. Handy, “Modeling and optimization of short Er3+-Yb3+ codoped fiber lasers,” IEEE J. Quantum Electron. 39, 1444-1451 (2003).
[CrossRef]

Yanagita, H.

X. Zou, A. Shikida, H. Yanagita, and H. Toratani, “Mechanisms of upconversion fluorescences in Er3+, Tm3+ codoped fluorozircoaluminate glasses,” J. Non-Cryst. Solids 181, 100-109 (1995).
[CrossRef]

Yano, Y.

Yeh, C.-H.

C.-H. Yeh, C.-C. Lee, and S. Chi, “120 nm Bandwidth erbium-doped fiber amplifier in parallel configuration,” IEEE Photonics Technol. Lett. 16, 1637-1639 (2004).
[CrossRef]

Yeh, D. C.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B 39, 80-90 (1989).
[CrossRef]

Zou, X.

X. Zou, A. Shikida, H. Yanagita, and H. Toratani, “Mechanisms of upconversion fluorescences in Er3+, Tm3+ codoped fluorozircoaluminate glasses,” J. Non-Cryst. Solids 181, 100-109 (1995).
[CrossRef]

Chem. Phys. Lett.

H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ codoped silica fiber,” Chem. Phys. Lett. 367,507-509 (2003).
[CrossRef]

Electron. Lett.

R. M. Percival and J. R. Williams, “Highly efficient 1064 μm upconversion pumped 1.47 μm thulium doped fluoride fiber amplifier,” Electron. Lett. 30, 1684-1685 (1994).
[CrossRef]

IEEE J. Lightwave Technol.

C. R. Giles and E. Desuvire, “Modeling erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

IEEE J. Quantum Electron.

F. Di Pasquale and M. Federighi, “Improved gain characteristics in high concentration Er3+/Yb3+ codoped glass waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2127-2131 (1994).
[CrossRef]

M. Karasek, “Optimum design of Er3+-Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699-1705 (1997).
[CrossRef]

E. Yahel and A. A. Handy, “Modeling and optimization of short Er3+-Yb3+ codoped fiber lasers,” IEEE J. Quantum Electron. 39, 1444-1451 (2003).
[CrossRef]

IEEE Photonics Technol. Lett.

L. Jin, D. Ma, Y. Ding, and C. Jiang, “theoretical analysis of gain characteristics of Er3+-Tm3+-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 18, 460-462 (2006).
[CrossRef]

Y. Ohishi, T. Kanamori, and T. Nishi, “Concentration effect on gain of Pr3+-doped fluoride fiber amplifier for 1.3 μm,” IEEE Photonics Technol. Lett. 4, 1338-1340 (1992).
[CrossRef]

C.-H. Yeh, C.-C. Lee, and S. Chi, “120 nm Bandwidth erbium-doped fiber amplifier in parallel configuration,” IEEE Photonics Technol. Lett. 16, 1637-1639 (2004).
[CrossRef]

Y. B. Lu, P. L. Chu, A. Alphones, and P. Shum, “A 105 nmUltrawide-band gain-flattened amplifier combining C- and L-band dual-core EDFAs in a parallel configuration,” IEEE Photonics Technol. Lett. 16, 1640-1642 (2004).
[CrossRef]

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 16, 777-779 (2004).
[CrossRef]

T. J. Whitley and R. Wyatt, “Alternative Gaussians spot size polynomial for use with doped fiber amplifier,” IEEE Photonics Technol. Lett. 5, 1325-1327 (1993).
[CrossRef]

J. Am. Ceram. Soc.

S. Shen, A. Jha, X. Liu, and M. Nataly, “Telluride glasses for broadband amplifiers and integrated optics”, J. Am. Ceram. Soc. 85, 1391-1395 (2002).
[CrossRef]

J. Lightwave Technol.

J. Lumin.

S. Tanabe, K. Suzuki, N. Soga, and T. Hanada, “Mechanisms and concentration dependence of Tm3+ blue and Er3+ green up-conversion in co-doped glasses by red-laser pumping,” J. Lumin. 65, 247-253 (1995).
[CrossRef]

J. Non-Cryst. Solids

X. Zou, A. Shikida, H. Yanagita, and H. Toratani, “Mechanisms of upconversion fluorescences in Er3+, Tm3+ codoped fluorozircoaluminate glasses,” J. Non-Cryst. Solids 181, 100-109 (1995).
[CrossRef]

W. Lozano, C. B. de Araujo, and Y. Messaddeq, “Enhanced frequency upconversion in Er3+ doped fluoroindate glass due to energy transfer from Tm3+,” J. Non-Cryst. Solids 311, 318-322 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Phys. Rev. B

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B 39, 80-90 (1989).
[CrossRef]

Other

F. X. Gan, Optical and Spectroscopic Properties of Glasses (Shanghai Science and Technology Press, 1992), p. 245.

T. Naito, T. Tanaka, and K. Torii, “A broadband distributed Raman amplifier for bandwidth beyond 100 nm,” Optical Fiber Conference (OSA, 2002), pp. 116-117.

C. Jiang and W. Hu, “Multiband-fiber Raman amplifier,” 9th Opto-Electronics and Communications Conference and 3rd International Conference on Optical Internet (Pacifica, 2004),
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of energy level and transition configuration and energy transfer process of Er 3 + - Tm 3 + - Pr 3 + - codoped telluride fiber amplifier pumped with 800 nm LD.

Fig. 2
Fig. 2

Variation of the gain at 1310 nm with Er 3 + and Pr 3 + ion concentrations. Pump wavelength, pump power, and input signal power are 800 nm , 20 mW , and 30 dBm , respectively. Fiber length is (a) 1.0 m , (b) 3.0 m , and (c) 5.0 m .

Fig. 3
Fig. 3

Variation of the gain at 1470 nm with Tm 3 + and Er 3 + ion concentration. Pump wavelength, pump power, and input signal power are 800 nm , 20 mW , and 30 dBm , respectively. Fiber length is (a) 1.0 m , (b) 3.0 m , and (c) 5.0 m .

Fig. 4
Fig. 4

Variation of the gain at 1530 nm with Er 3 + ion and Tm 3 + ion concentration. Pump wavelength, pump power, and input signal power are 800 nm , 20 mW , and 30 dBm , respectively. Fiber length is (a) 0.5 m , (b) 0.9 m , and (c) 1.3 m .

Fig. 5
Fig. 5

Variation of the gains at 1310 nm , 1470 nm , and 1530 nm windows with fiber length. Pump wavelength and pump power are 800 nm and 20 mW , respectively. (a)  Pr 3 + , Tm 3 + , 2.0 × 10 24 , Er 3 + , 2.26 × 10 24 ( ions / m 3 ) ; (b)  Pr 3 + 2.0 × 10 24 , Tm 3 + , 4.0 × 10 24 , Er 3 + , 2.26 × 10 24 ( ions / m 3 ) ; (c)  Pr 3 + 4.0 × 10 24 , Tm 3 + , 2.0 × 10 24 , Er 3 + , 2.26 × 10 24 ( ions / m 3 ) ; (d)  Pr 3 + , Tm 3 + , 2.0 × 10 24 , Er 3 + , 2.26 × 10 24 ( ions / m 3 ) ; pump power is 40 mW .

Tables (1)

Tables Icon

Table 1 Spectroscopic Parameters of Er 3 + -, Tm 3 + -, and Pr 3 + -Doped Telluride Fiber for Numerical Calculation

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N 1 t = W 13 N 1 + A 21 N 2 + ( W 31 + A 31 ) N 3 W E T 63 N 1 N 6 W E T 74 N 1 N 7 , N 2 t = ( W 24 + A 21 ) N 2 + ( W 42 + A 42 ) N 4 , N 3 t = W 13 N 1 ( W 31 + A 31 ) N 3 + W E T 63 N N 6 1 , N 4 t = W 24 N 2 ( W 42 + A 42 ) N 4 + W E T 74 N 1 N 7 , N 5 t = ( W 58 + W ) 56 N 5 + W E T 63 N N 6 1 + W E T 74 N N 7 1 + ( W 65 + A 65 ) N 6 + W E T 6 10 N 9 N 6 + W E T 7 11 N 7 N 9 W E T 12 8 N 5 N 12 , N 6 t = W 56 N 5 W E T 63 N N 6 1 ( W 65 + A 65 ) N 6 W E T 6 10 N 9 N 6 + A 76 N 7 , N 7 t = A 87 N 8 ( W E T 74 N 1 + A 76 ) N 7 W E T 7 11 N 7 N 9 , N 8 t = ( W 58 + W E T 12 8 N 12 ) N 5 A 87 N 8 , N 9 t = ( W 9 12 + W E T 6 10 N 6 + W E T 7 11 N 7 ) N 9 + W E T 12 8 N 5 N 12 + ( W 10 9 + A 10 9 ) N 10 W 9 10 N 9 , N 10 t = ( W 10 9 + A 10 9 ) N 10 + W 9 10 N 9 + W E T 6 10 N 6 N 9 + A 11 10 N 11 + ( W 12 10 + A 12 10 ) N 12 W 10 12 N 10 , N 11 t = W E T 7 11 N 7 N 9 A 11 10 N 11 + A 12 11 N 12 , N 12 t = W 9 12 N 9 ( W E T 12 8 N 5 + A 12 11 + W 12 10 ) N 12 + W 10 12 N 10 .
W i j = σ i j P k h ν k A eff ( i , j = 1...12 , k = s , p ) ,
d P S 1 d z = Γ 1310 ( N 4 σ prse B N 2 σ prsa B ) P S 1 α 1310 P S 1 , d P S 2 d z = Γ 1470 ( N 12 σ tmse A N 10 σ tmsa A ) P S 2 α 1470 P S 2 , d P S 3 d z = Γ 1530 ( N 6 σ erse N 5 σ ersa ) P S 3 α 1530 P S 3 , d P S 4 d z = Γ 1600 ( N 3 σ prse A N 1 σ prsa A ) P S 4 α 1600 P S 4 , d P S 5 d z = Γ 1650 ( N 10 σ tmse B N 9 σ tmsa B ) P S 5 α 1650 P S 5 , d P p d z = Γ 800 [ ( N 5 σ erpa N 8 σ erpe ) + ( N 9 σ tmpa N 12 σ tmpe ) ] P p α 800 P p ,
w = a ( 0.616 + 1.66 v 1.5 + 0.987 v 6 ) ,
W E T 63 = W E T 74 = 3.5 × 10 24 + 2.41 × 10 49 ( N E r t 4.4 × 10 25 ) ,
W E T 6 10 = W E T 7 11 = 3.5 × 10 24 + 2.41 × 10 49 ( N Er t 4.4 × 10 25 ) ,
W E T 12 8 = 3.5 × 10 22 + 2.41 × 10 49 ( N tm t 4.4 × 10 25 ) ,

Metrics