Abstract

We report the polarization dynamics in an optical ground wire (OPGW) network for a summer period and a fall period for what is believed to be the first time. To better observe the surrounding magnetic fields contribution to modulating the state of polarization (SOP) we installed a Faraday rotating mirror to correct reciprocal birefringence from quasi-static changes. We also monitored the OPGW while no electrical current was present in the towers’ electrical conductors. The spectral analysis, the arc length mapped out over a given time interval on a Poincaré sphere, histograms of the arc length, and the SOP autocorrelation function are calculated to analyze the SOP changes. Ambient temperature changes, wind, Sun- induced temperature gradients, and electrical current all have a significant impact on the SOP drift in an OPGW network. Wind-generated cable oscillations and Sun-induced temperature gradients are shown to be the dominant slow SOP modulations, while Aeolian vibrations and electrical current are shown to be the dominant fast SOP modulations. The spectral analysis revealed that the electrical current gives the fastest SOP modulation to be 300Hz for the sampling frequency of 1KHz. This has set the upper speed limit for real-time polarization mode dispersion compensation devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13, 1035-1037(2001).
    [CrossRef]
  2. J. Wuttke, P. Krummrich, and J. Rosch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photon. Technol. Lett. 15, 882-884 (2003).
    [CrossRef]
  3. Z. Zhang, X. Bao, Q. Yu, and L. Chen, “Fast state of polarization and PMD drift in submarine fibers,” IEEE Photon. Technol. Lett. 18, 1034-1036 (2006).
    [CrossRef]
  4. X. Bao, D. Waddy, and L. Chen, “Polarization fluctuations in field fibers,” in 17th Annual Meeting of the IEEE (IEEE, 2004), Vol. 1, pp 82-83.
  5. R. Lings, “Overview of transmission lines above 700 kV,” in Power Engineering Society Inaugural Conference and Exposition in Africa (IEEE,2005), pp. 33-43.
    [CrossRef]
  6. J. P. Member and J. Comellas, “Dispersion-shifted fiber polarization scrambler based on Faraday effect,” IEEE Photon. Technol. Lett. 11 , 845-847 (1999).
    [CrossRef]
  7. Hydro-Québec, “Characteristics and target values of the voltage supplied by transmission system,” Hydro-Québec TransÉnergie. June 1999, http://www.hydroquebec.com/transenergie/.
  8. M. Brodsky, A. Sirenko, A. Zavriyev, and A. Trifonov, “Faraday effect in long telecom fibers with randomly varying birefringence,” in Optical Fiber Communication Conference (OFC 2006) (Optical Society of America, 2006), paper PDP6.
    [CrossRef]
  9. H. Krispin, S. Fuchs, and P. Hagedorn, “Optimization of the efficiency of Aeolian vibration dampers,” in Power Engineering Society Conference and Exposition in Africa, 2007. (Power Africa '07) (IEEE, 2007), pp 1-3.
    [CrossRef]
  10. Y. Serizawa, M. Myoujin, S. Miyazaki, and K. Kitamura, “Transmission delay variations in OPGW and overhead fiber-optic cable links,” IEEE Trans. Power Deliv. 12, 1415-1421 (1997).
    [CrossRef]

2006 (1)

Z. Zhang, X. Bao, Q. Yu, and L. Chen, “Fast state of polarization and PMD drift in submarine fibers,” IEEE Photon. Technol. Lett. 18, 1034-1036 (2006).
[CrossRef]

2003 (1)

J. Wuttke, P. Krummrich, and J. Rosch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photon. Technol. Lett. 15, 882-884 (2003).
[CrossRef]

2001 (1)

D. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13, 1035-1037(2001).
[CrossRef]

1999 (1)

J. P. Member and J. Comellas, “Dispersion-shifted fiber polarization scrambler based on Faraday effect,” IEEE Photon. Technol. Lett. 11 , 845-847 (1999).
[CrossRef]

1997 (1)

Y. Serizawa, M. Myoujin, S. Miyazaki, and K. Kitamura, “Transmission delay variations in OPGW and overhead fiber-optic cable links,” IEEE Trans. Power Deliv. 12, 1415-1421 (1997).
[CrossRef]

Bao, X.

Z. Zhang, X. Bao, Q. Yu, and L. Chen, “Fast state of polarization and PMD drift in submarine fibers,” IEEE Photon. Technol. Lett. 18, 1034-1036 (2006).
[CrossRef]

D. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13, 1035-1037(2001).
[CrossRef]

X. Bao, D. Waddy, and L. Chen, “Polarization fluctuations in field fibers,” in 17th Annual Meeting of the IEEE (IEEE, 2004), Vol. 1, pp 82-83.

Brodsky, M.

M. Brodsky, A. Sirenko, A. Zavriyev, and A. Trifonov, “Faraday effect in long telecom fibers with randomly varying birefringence,” in Optical Fiber Communication Conference (OFC 2006) (Optical Society of America, 2006), paper PDP6.
[CrossRef]

Chen, L.

Z. Zhang, X. Bao, Q. Yu, and L. Chen, “Fast state of polarization and PMD drift in submarine fibers,” IEEE Photon. Technol. Lett. 18, 1034-1036 (2006).
[CrossRef]

D. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13, 1035-1037(2001).
[CrossRef]

X. Bao, D. Waddy, and L. Chen, “Polarization fluctuations in field fibers,” in 17th Annual Meeting of the IEEE (IEEE, 2004), Vol. 1, pp 82-83.

Comellas, J.

J. P. Member and J. Comellas, “Dispersion-shifted fiber polarization scrambler based on Faraday effect,” IEEE Photon. Technol. Lett. 11 , 845-847 (1999).
[CrossRef]

Fuchs, S.

H. Krispin, S. Fuchs, and P. Hagedorn, “Optimization of the efficiency of Aeolian vibration dampers,” in Power Engineering Society Conference and Exposition in Africa, 2007. (Power Africa '07) (IEEE, 2007), pp 1-3.
[CrossRef]

Hagedorn, P.

H. Krispin, S. Fuchs, and P. Hagedorn, “Optimization of the efficiency of Aeolian vibration dampers,” in Power Engineering Society Conference and Exposition in Africa, 2007. (Power Africa '07) (IEEE, 2007), pp 1-3.
[CrossRef]

Hydro-Québec,

Hydro-Québec, “Characteristics and target values of the voltage supplied by transmission system,” Hydro-Québec TransÉnergie. June 1999, http://www.hydroquebec.com/transenergie/.

Kitamura, K.

Y. Serizawa, M. Myoujin, S. Miyazaki, and K. Kitamura, “Transmission delay variations in OPGW and overhead fiber-optic cable links,” IEEE Trans. Power Deliv. 12, 1415-1421 (1997).
[CrossRef]

Krispin, H.

H. Krispin, S. Fuchs, and P. Hagedorn, “Optimization of the efficiency of Aeolian vibration dampers,” in Power Engineering Society Conference and Exposition in Africa, 2007. (Power Africa '07) (IEEE, 2007), pp 1-3.
[CrossRef]

Krummrich, P.

J. Wuttke, P. Krummrich, and J. Rosch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photon. Technol. Lett. 15, 882-884 (2003).
[CrossRef]

Lings, R.

R. Lings, “Overview of transmission lines above 700 kV,” in Power Engineering Society Inaugural Conference and Exposition in Africa (IEEE,2005), pp. 33-43.
[CrossRef]

Lu, P.

D. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13, 1035-1037(2001).
[CrossRef]

Miyazaki, S.

Y. Serizawa, M. Myoujin, S. Miyazaki, and K. Kitamura, “Transmission delay variations in OPGW and overhead fiber-optic cable links,” IEEE Trans. Power Deliv. 12, 1415-1421 (1997).
[CrossRef]

Myoujin, M.

Y. Serizawa, M. Myoujin, S. Miyazaki, and K. Kitamura, “Transmission delay variations in OPGW and overhead fiber-optic cable links,” IEEE Trans. Power Deliv. 12, 1415-1421 (1997).
[CrossRef]

P., J.

J. P. Member and J. Comellas, “Dispersion-shifted fiber polarization scrambler based on Faraday effect,” IEEE Photon. Technol. Lett. 11 , 845-847 (1999).
[CrossRef]

Rosch, J.

J. Wuttke, P. Krummrich, and J. Rosch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photon. Technol. Lett. 15, 882-884 (2003).
[CrossRef]

Serizawa, Y.

Y. Serizawa, M. Myoujin, S. Miyazaki, and K. Kitamura, “Transmission delay variations in OPGW and overhead fiber-optic cable links,” IEEE Trans. Power Deliv. 12, 1415-1421 (1997).
[CrossRef]

Sirenko, A.

M. Brodsky, A. Sirenko, A. Zavriyev, and A. Trifonov, “Faraday effect in long telecom fibers with randomly varying birefringence,” in Optical Fiber Communication Conference (OFC 2006) (Optical Society of America, 2006), paper PDP6.
[CrossRef]

Trifonov, A.

M. Brodsky, A. Sirenko, A. Zavriyev, and A. Trifonov, “Faraday effect in long telecom fibers with randomly varying birefringence,” in Optical Fiber Communication Conference (OFC 2006) (Optical Society of America, 2006), paper PDP6.
[CrossRef]

Waddy, D.

D. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13, 1035-1037(2001).
[CrossRef]

X. Bao, D. Waddy, and L. Chen, “Polarization fluctuations in field fibers,” in 17th Annual Meeting of the IEEE (IEEE, 2004), Vol. 1, pp 82-83.

Wuttke, J.

J. Wuttke, P. Krummrich, and J. Rosch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photon. Technol. Lett. 15, 882-884 (2003).
[CrossRef]

Yu, Q.

Z. Zhang, X. Bao, Q. Yu, and L. Chen, “Fast state of polarization and PMD drift in submarine fibers,” IEEE Photon. Technol. Lett. 18, 1034-1036 (2006).
[CrossRef]

Zavriyev, A.

M. Brodsky, A. Sirenko, A. Zavriyev, and A. Trifonov, “Faraday effect in long telecom fibers with randomly varying birefringence,” in Optical Fiber Communication Conference (OFC 2006) (Optical Society of America, 2006), paper PDP6.
[CrossRef]

Zhang, Z.

Z. Zhang, X. Bao, Q. Yu, and L. Chen, “Fast state of polarization and PMD drift in submarine fibers,” IEEE Photon. Technol. Lett. 18, 1034-1036 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

D. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13, 1035-1037(2001).
[CrossRef]

J. Wuttke, P. Krummrich, and J. Rosch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photon. Technol. Lett. 15, 882-884 (2003).
[CrossRef]

Z. Zhang, X. Bao, Q. Yu, and L. Chen, “Fast state of polarization and PMD drift in submarine fibers,” IEEE Photon. Technol. Lett. 18, 1034-1036 (2006).
[CrossRef]

J. P. Member and J. Comellas, “Dispersion-shifted fiber polarization scrambler based on Faraday effect,” IEEE Photon. Technol. Lett. 11 , 845-847 (1999).
[CrossRef]

IEEE Trans. Power Deliv. (1)

Y. Serizawa, M. Myoujin, S. Miyazaki, and K. Kitamura, “Transmission delay variations in OPGW and overhead fiber-optic cable links,” IEEE Trans. Power Deliv. 12, 1415-1421 (1997).
[CrossRef]

Other (5)

Hydro-Québec, “Characteristics and target values of the voltage supplied by transmission system,” Hydro-Québec TransÉnergie. June 1999, http://www.hydroquebec.com/transenergie/.

M. Brodsky, A. Sirenko, A. Zavriyev, and A. Trifonov, “Faraday effect in long telecom fibers with randomly varying birefringence,” in Optical Fiber Communication Conference (OFC 2006) (Optical Society of America, 2006), paper PDP6.
[CrossRef]

H. Krispin, S. Fuchs, and P. Hagedorn, “Optimization of the efficiency of Aeolian vibration dampers,” in Power Engineering Society Conference and Exposition in Africa, 2007. (Power Africa '07) (IEEE, 2007), pp 1-3.
[CrossRef]

X. Bao, D. Waddy, and L. Chen, “Polarization fluctuations in field fibers,” in 17th Annual Meeting of the IEEE (IEEE, 2004), Vol. 1, pp 82-83.

R. Lings, “Overview of transmission lines above 700 kV,” in Power Engineering Society Inaugural Conference and Exposition in Africa (IEEE,2005), pp. 33-43.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental measurement setups for (a) Fiber 1 and Fiber 2, 1–3 August; (b) Fiber 3, 5–9 November; and (c) Fiber 4, 10 July.

Fig. 2
Fig. 2

Power spectrum calculated for a 1 min period in (a) Fiber 1 with a loop configuration and (b)  Fiber 2 with a FRM on 1 August at 1:34 pm. Both FUTs are installed in the same OPGW on a 735 kV high-voltage power line.

Fig. 3
Fig. 3

Wind and electrical current data plotted for (a) Fiber 2 and (b) Fiber 3. Calculated maximum arc length is plotted with ACF 50% of (c) Fiber 2 and (d) Fiber 3.

Fig. 4
Fig. 4

Calculated 1 min period power spectrum for Fiber 1 measured with an electrical current of 860 A on 2 August 2007 (solid black line), Fiber 4 measured without electrical current on 10 July 2007 (dashed black line), and a background measurement taken using 2   m of fiber inside station A (solid gray line).

Fig. 5
Fig. 5

Poincaré sphere plotted with 100 normalized points acquired from Fiber 1 during a daytime period. Slow drifting 60 Hz SOP modulations are visible.

Fig. 6
Fig. 6

Calculated histograms of arc length for different values of Δ t during the following environmental and electrical current conditions: a) Fiber 2 ( I = 801 A , daytime, w ind = 28 km / h ), b) Fiber 1 ( I = 801 A , daytime, wind = 28 km / h ), c) Fiber 2 ( I = 612 A , nighttime, wind = 4 km / h ), d) Fiber 1 ( I = 612 A , nighttime, wind = 4 km / h ), and e) Fiber 4 ( I = 0 , daytime, wind = 11 km / h ).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( t , Δ t ) = cos 1 [ S ( t ) · S ( t + Δ t ) ] ,
ACF ( Δ t ) = 1 N k = 0 N 1 S ( t k ) · S ( t k + Δ t ) ,
ACF 50 % ( t half ) = T t half T ,

Metrics