Abstract

In the atmosphere pointlike sources are surrounded by an aureole due to molecular and aerosol scattering. UV phase functions of haze droplets have a very important forward peak that limits signal angular spreading in relation to the clear atmosphere case where Rayleigh scattering predominates. This specific property can be exploited using solar blind UV source detection as an aircraft landing aid under foggy conditions. Two methods have been used to compute UV light propagation, based on the Monte Carlo technique and a semi-empirical approach. Results obtained after addition of three types of sensor and UV runway light models show that an important improvement in landing conditions during foggy weather could be achieved by use of a solar blind UV intensified CCD camera with two stages of microchannel plates.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Janesick, T. Elliott, H. H. Marsh, S. Collins, J. K. McCarthy, and M. M. Blouke, “Potential of CCDs for UV and x-ray plasma diagnostics (invited),” Rev. Sci. Instrum. 56, 796-801 (1985).
    [CrossRef]
  2. J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, and V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10 000 Å,” Rev. Sci. Instrum. 61, 2744-2746 (1990).
    [CrossRef]
  3. P. Bergamini, G. Bonelli, E. G. Tanzi, M. Uslenghi, L. Poletto, and G. Tondello, “A fast readout and processing electronics for photon counting intensified charge-coupled device,” Rev. Sci. Instrum. 71, 1841-1848 (2000).
    [CrossRef]
  4. I. N. Dalinenko, A. V. Malyarov, G. I. Vishnevsky, M. G. Vydrevitch, V. G. Kossov, Leonid Y. Lazovsky, and S. V. Golovkin, “Design and fabrication technology of thinned backside-excited CCD imagers and the family of the intensified electron-bombarded CCD image tubes,” Nucl. Instrum. Methods A 387, 294-296 (1997).
  5. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8, 1964-1972 (1991).
    [CrossRef]
  6. M. Lindner, S. Elstein, and P. Lindner, “Solar blind and bispectral imaging with ICCD, BCCD and EBCCD cameras,” Proc. SPIE 3434, 22-31 (1998).
  7. Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46, 67-73(2008).
  8. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33, 1860-1862 (2008).
    [CrossRef]
  9. B. D. Nordwall, “UV sensor proposed as pilot landing aid,” Aviat. Week Space Technol. 147, 81-84 (1997).
  10. V. J. Norris, R. S. Evans, and D. G. Currie, “Performance comparison of visual, infrared and ultraviolet sensors for landing aircraft in fog,” Proc. SPIE 3691, 2-20 (1999).
  11. V. J. Norris and D. G. Currie, “ Autonomous UV-enhanced vision system for landing on CAT I runways during CAT IIIa weather conditions,” Proc. SPIE 4363, 9-20 (2001).
  12. V. J. Norris, “Autonomous UV-enhanced vision system that prevents runway incursions at medium size airports,” Proc. SPIE 4363,67-75 (2001).
  13. C. Lavigne, G. Durand, and A. Roblin, “ Ultraviolet light propagation under low visibility atmospheric conditions and its application to aircraft landing aid,” Appl. Opt. 45, 9140-9150 (2006).
    [CrossRef]
  14. C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, and C. Rozé, “Comparison of iterative and Monte Carlo methods for calculation of the aureole about a point source in the Earth's atmosphere,” Appl. Opt. 38, 6237-6246 (1999).
    [CrossRef]
  15. D. J. Meyer, P. A. Acevedo, and B. E. O'Toole, “Improvements to real-time ultraviolet scene simulation for sensor testing,” Proc. SPIE 3368, 310-320 (1998).
  16. R. H. Giza, P. A. Acevedo, and J. D. Bliss, “Ultraviolet scene simulation for missile approach warning system testing,” Proc. SPIE 3084, 282-291 (1997).
  17. C. Lavigne, A. Roblin, P. Chervet, and P. Chazette, “Experimental and theoretical studies of the aureole about a point source that is due to atmospheric scattering in the middle ultraviolet,” Appl. Opt. 44, 1250-1262 (2005).
    [CrossRef]
  18. C. Lavigne, “Etude théorique et expérimentale de la propagation du rayonnement UV dans la basse atmosphère,” Ph.D. dissertation (Université de Rouen, 2001).
  19. Aeronautical Information Manual: Official Guide to Basic Flight Information and ATC Procedures, Change 1, U.S. Department of Transportation, Federal Aviation Administration, 31 July 2008.
  20. L. W. Abreu and G. P. Anderson, “The MODTRAN 2/3 Report and LOWTRAN 7 Model,” Ontar Corporation for PL/GPOS Phillips Laboratory Geophysics Directorate (1996).
  21. A. Bulcholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765-2773 (1995).
    [CrossRef]
  22. M. Blumthaler and W. Ambach, “Solar UVB albedo of various surfaces,” Photochem. Photobiol. 48, 85-88 (1988).
  23. J. V. Sweedler, K. L. Ratzlaff, and M. B. Denton, Charge-Transfer Devices in Spectroscopy (Wiley, 1994).
  24. V. Chalmeton and P. Chevalier, “Pulse height distribution for single electron input,” Acta Electron. 14, 99-106 (1971).
  25. V. J. Norris, “Autonomous low cost electro-optical system that prevent runway incursion by providing direct warnings to flight crews,” Proc. SPIE 5081, 109-123 (2003).
  26. V. J. Norris, “FAA evaluation of UV technology for runway incursion prevention and low visibility landings,” Proc. SPIE 5081, 1-10 (2003).

2008 (2)

2006 (1)

2005 (1)

2003 (2)

V. J. Norris, “Autonomous low cost electro-optical system that prevent runway incursion by providing direct warnings to flight crews,” Proc. SPIE 5081, 109-123 (2003).

V. J. Norris, “FAA evaluation of UV technology for runway incursion prevention and low visibility landings,” Proc. SPIE 5081, 1-10 (2003).

2001 (2)

V. J. Norris and D. G. Currie, “ Autonomous UV-enhanced vision system for landing on CAT I runways during CAT IIIa weather conditions,” Proc. SPIE 4363, 9-20 (2001).

V. J. Norris, “Autonomous UV-enhanced vision system that prevents runway incursions at medium size airports,” Proc. SPIE 4363,67-75 (2001).

2000 (1)

P. Bergamini, G. Bonelli, E. G. Tanzi, M. Uslenghi, L. Poletto, and G. Tondello, “A fast readout and processing electronics for photon counting intensified charge-coupled device,” Rev. Sci. Instrum. 71, 1841-1848 (2000).
[CrossRef]

1999 (2)

V. J. Norris, R. S. Evans, and D. G. Currie, “Performance comparison of visual, infrared and ultraviolet sensors for landing aircraft in fog,” Proc. SPIE 3691, 2-20 (1999).

C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, and C. Rozé, “Comparison of iterative and Monte Carlo methods for calculation of the aureole about a point source in the Earth's atmosphere,” Appl. Opt. 38, 6237-6246 (1999).
[CrossRef]

1998 (2)

D. J. Meyer, P. A. Acevedo, and B. E. O'Toole, “Improvements to real-time ultraviolet scene simulation for sensor testing,” Proc. SPIE 3368, 310-320 (1998).

M. Lindner, S. Elstein, and P. Lindner, “Solar blind and bispectral imaging with ICCD, BCCD and EBCCD cameras,” Proc. SPIE 3434, 22-31 (1998).

1997 (3)

B. D. Nordwall, “UV sensor proposed as pilot landing aid,” Aviat. Week Space Technol. 147, 81-84 (1997).

I. N. Dalinenko, A. V. Malyarov, G. I. Vishnevsky, M. G. Vydrevitch, V. G. Kossov, Leonid Y. Lazovsky, and S. V. Golovkin, “Design and fabrication technology of thinned backside-excited CCD imagers and the family of the intensified electron-bombarded CCD image tubes,” Nucl. Instrum. Methods A 387, 294-296 (1997).

R. H. Giza, P. A. Acevedo, and J. D. Bliss, “Ultraviolet scene simulation for missile approach warning system testing,” Proc. SPIE 3084, 282-291 (1997).

1995 (1)

1991 (1)

1990 (1)

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, and V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10 000 Å,” Rev. Sci. Instrum. 61, 2744-2746 (1990).
[CrossRef]

1988 (1)

M. Blumthaler and W. Ambach, “Solar UVB albedo of various surfaces,” Photochem. Photobiol. 48, 85-88 (1988).

1985 (1)

J. R. Janesick, T. Elliott, H. H. Marsh, S. Collins, J. K. McCarthy, and M. M. Blouke, “Potential of CCDs for UV and x-ray plasma diagnostics (invited),” Rev. Sci. Instrum. 56, 796-801 (1985).
[CrossRef]

1971 (1)

V. Chalmeton and P. Chevalier, “Pulse height distribution for single electron input,” Acta Electron. 14, 99-106 (1971).

Abreu, L. W.

L. W. Abreu and G. P. Anderson, “The MODTRAN 2/3 Report and LOWTRAN 7 Model,” Ontar Corporation for PL/GPOS Phillips Laboratory Geophysics Directorate (1996).

Acevedo, P. A.

D. J. Meyer, P. A. Acevedo, and B. E. O'Toole, “Improvements to real-time ultraviolet scene simulation for sensor testing,” Proc. SPIE 3368, 310-320 (1998).

R. H. Giza, P. A. Acevedo, and J. D. Bliss, “Ultraviolet scene simulation for missile approach warning system testing,” Proc. SPIE 3084, 282-291 (1997).

Ambach, W.

M. Blumthaler and W. Ambach, “Solar UVB albedo of various surfaces,” Photochem. Photobiol. 48, 85-88 (1988).

Anderson, G. P.

L. W. Abreu and G. P. Anderson, “The MODTRAN 2/3 Report and LOWTRAN 7 Model,” Ontar Corporation for PL/GPOS Phillips Laboratory Geophysics Directorate (1996).

Bautz, M. W.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, and V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10 000 Å,” Rev. Sci. Instrum. 61, 2744-2746 (1990).
[CrossRef]

Bergamini, P.

P. Bergamini, G. Bonelli, E. G. Tanzi, M. Uslenghi, L. Poletto, and G. Tondello, “A fast readout and processing electronics for photon counting intensified charge-coupled device,” Rev. Sci. Instrum. 71, 1841-1848 (2000).
[CrossRef]

Bliss, J. D.

R. H. Giza, P. A. Acevedo, and J. D. Bliss, “Ultraviolet scene simulation for missile approach warning system testing,” Proc. SPIE 3084, 282-291 (1997).

Blouke, M. M.

J. R. Janesick, T. Elliott, H. H. Marsh, S. Collins, J. K. McCarthy, and M. M. Blouke, “Potential of CCDs for UV and x-ray plasma diagnostics (invited),” Rev. Sci. Instrum. 56, 796-801 (1985).
[CrossRef]

Blumthaler, M.

M. Blumthaler and W. Ambach, “Solar UVB albedo of various surfaces,” Photochem. Photobiol. 48, 85-88 (1988).

Bonelli, G.

P. Bergamini, G. Bonelli, E. G. Tanzi, M. Uslenghi, L. Poletto, and G. Tondello, “A fast readout and processing electronics for photon counting intensified charge-coupled device,” Rev. Sci. Instrum. 71, 1841-1848 (2000).
[CrossRef]

Bulcholtz, A.

Burke, B. E.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, and V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10 000 Å,” Rev. Sci. Instrum. 61, 2744-2746 (1990).
[CrossRef]

Chalmeton, V.

V. Chalmeton and P. Chevalier, “Pulse height distribution for single electron input,” Acta Electron. 14, 99-106 (1971).

Chazette, P.

Chen, G.

Chervet, P.

Chevalier, P.

V. Chalmeton and P. Chevalier, “Pulse height distribution for single electron input,” Acta Electron. 14, 99-106 (1971).

Collins, S.

J. R. Janesick, T. Elliott, H. H. Marsh, S. Collins, J. K. McCarthy, and M. M. Blouke, “Potential of CCDs for UV and x-ray plasma diagnostics (invited),” Rev. Sci. Instrum. 56, 796-801 (1985).
[CrossRef]

Currie, D. G.

V. J. Norris and D. G. Currie, “ Autonomous UV-enhanced vision system for landing on CAT I runways during CAT IIIa weather conditions,” Proc. SPIE 4363, 9-20 (2001).

V. J. Norris, R. S. Evans, and D. G. Currie, “Performance comparison of visual, infrared and ultraviolet sensors for landing aircraft in fog,” Proc. SPIE 3691, 2-20 (1999).

Dalinenko, I. N.

I. N. Dalinenko, A. V. Malyarov, G. I. Vishnevsky, M. G. Vydrevitch, V. G. Kossov, Leonid Y. Lazovsky, and S. V. Golovkin, “Design and fabrication technology of thinned backside-excited CCD imagers and the family of the intensified electron-bombarded CCD image tubes,” Nucl. Instrum. Methods A 387, 294-296 (1997).

Denton, M. B.

J. V. Sweedler, K. L. Ratzlaff, and M. B. Denton, Charge-Transfer Devices in Spectroscopy (Wiley, 1994).

Ding, H.

Dolat, V. S.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, and V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10 000 Å,” Rev. Sci. Instrum. 61, 2744-2746 (1990).
[CrossRef]

Doty, J. P.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, and V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10 000 Å,” Rev. Sci. Instrum. 61, 2744-2746 (1990).
[CrossRef]

Durand, G.

Elliott, T.

J. R. Janesick, T. Elliott, H. H. Marsh, S. Collins, J. K. McCarthy, and M. M. Blouke, “Potential of CCDs for UV and x-ray plasma diagnostics (invited),” Rev. Sci. Instrum. 56, 796-801 (1985).
[CrossRef]

Elstein, S.

M. Lindner, S. Elstein, and P. Lindner, “Solar blind and bispectral imaging with ICCD, BCCD and EBCCD cameras,” Proc. SPIE 3434, 22-31 (1998).

Evans, R. S.

V. J. Norris, R. S. Evans, and D. G. Currie, “Performance comparison of visual, infrared and ultraviolet sensors for landing aircraft in fog,” Proc. SPIE 3691, 2-20 (1999).

Girasole, T.

Giza, R. H.

R. H. Giza, P. A. Acevedo, and J. D. Bliss, “Ultraviolet scene simulation for missile approach warning system testing,” Proc. SPIE 3084, 282-291 (1997).

Golovkin, S. V.

I. N. Dalinenko, A. V. Malyarov, G. I. Vishnevsky, M. G. Vydrevitch, V. G. Kossov, Leonid Y. Lazovsky, and S. V. Golovkin, “Design and fabrication technology of thinned backside-excited CCD imagers and the family of the intensified electron-bombarded CCD image tubes,” Nucl. Instrum. Methods A 387, 294-296 (1997).

Huang, C. M.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, and V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10 000 Å,” Rev. Sci. Instrum. 61, 2744-2746 (1990).
[CrossRef]

Janesick, J. R.

J. R. Janesick, T. Elliott, H. H. Marsh, S. Collins, J. K. McCarthy, and M. M. Blouke, “Potential of CCDs for UV and x-ray plasma diagnostics (invited),” Rev. Sci. Instrum. 56, 796-801 (1985).
[CrossRef]

Kossov, V. G.

I. N. Dalinenko, A. V. Malyarov, G. I. Vishnevsky, M. G. Vydrevitch, V. G. Kossov, Leonid Y. Lazovsky, and S. V. Golovkin, “Design and fabrication technology of thinned backside-excited CCD imagers and the family of the intensified electron-bombarded CCD image tubes,” Nucl. Instrum. Methods A 387, 294-296 (1997).

Langlois, S.

Lavigne, C.

Lazovsky, Leonid Y.

I. N. Dalinenko, A. V. Malyarov, G. I. Vishnevsky, M. G. Vydrevitch, V. G. Kossov, Leonid Y. Lazovsky, and S. V. Golovkin, “Design and fabrication technology of thinned backside-excited CCD imagers and the family of the intensified electron-bombarded CCD image tubes,” Nucl. Instrum. Methods A 387, 294-296 (1997).

Lindner, M.

M. Lindner, S. Elstein, and P. Lindner, “Solar blind and bispectral imaging with ICCD, BCCD and EBCCD cameras,” Proc. SPIE 3434, 22-31 (1998).

Lindner, P.

M. Lindner, S. Elstein, and P. Lindner, “Solar blind and bispectral imaging with ICCD, BCCD and EBCCD cameras,” Proc. SPIE 3434, 22-31 (1998).

Luettgen, M. R.

Malyarov, A. V.

I. N. Dalinenko, A. V. Malyarov, G. I. Vishnevsky, M. G. Vydrevitch, V. G. Kossov, Leonid Y. Lazovsky, and S. V. Golovkin, “Design and fabrication technology of thinned backside-excited CCD imagers and the family of the intensified electron-bombarded CCD image tubes,” Nucl. Instrum. Methods A 387, 294-296 (1997).

Marsh, H. H.

J. R. Janesick, T. Elliott, H. H. Marsh, S. Collins, J. K. McCarthy, and M. M. Blouke, “Potential of CCDs for UV and x-ray plasma diagnostics (invited),” Rev. Sci. Instrum. 56, 796-801 (1985).
[CrossRef]

McCarthy, J. K.

J. R. Janesick, T. Elliott, H. H. Marsh, S. Collins, J. K. McCarthy, and M. M. Blouke, “Potential of CCDs for UV and x-ray plasma diagnostics (invited),” Rev. Sci. Instrum. 56, 796-801 (1985).
[CrossRef]

McGonagle, W. H.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, and V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10 000 Å,” Rev. Sci. Instrum. 61, 2744-2746 (1990).
[CrossRef]

Meyer, D. J.

D. J. Meyer, P. A. Acevedo, and B. E. O'Toole, “Improvements to real-time ultraviolet scene simulation for sensor testing,” Proc. SPIE 3368, 310-320 (1998).

Mountain, R. W.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, and V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10 000 Å,” Rev. Sci. Instrum. 61, 2744-2746 (1990).
[CrossRef]

Nordwall, B. D.

B. D. Nordwall, “UV sensor proposed as pilot landing aid,” Aviat. Week Space Technol. 147, 81-84 (1997).

Norris, V. J.

V. J. Norris, “Autonomous low cost electro-optical system that prevent runway incursion by providing direct warnings to flight crews,” Proc. SPIE 5081, 109-123 (2003).

V. J. Norris, “FAA evaluation of UV technology for runway incursion prevention and low visibility landings,” Proc. SPIE 5081, 1-10 (2003).

V. J. Norris and D. G. Currie, “ Autonomous UV-enhanced vision system for landing on CAT I runways during CAT IIIa weather conditions,” Proc. SPIE 4363, 9-20 (2001).

V. J. Norris, “Autonomous UV-enhanced vision system that prevents runway incursions at medium size airports,” Proc. SPIE 4363,67-75 (2001).

V. J. Norris, R. S. Evans, and D. G. Currie, “Performance comparison of visual, infrared and ultraviolet sensors for landing aircraft in fog,” Proc. SPIE 3691, 2-20 (1999).

O'Toole, B. E.

D. J. Meyer, P. A. Acevedo, and B. E. O'Toole, “Improvements to real-time ultraviolet scene simulation for sensor testing,” Proc. SPIE 3368, 310-320 (1998).

Outters, V.

Poletto, L.

P. Bergamini, G. Bonelli, E. G. Tanzi, M. Uslenghi, L. Poletto, and G. Tondello, “A fast readout and processing electronics for photon counting intensified charge-coupled device,” Rev. Sci. Instrum. 71, 1841-1848 (2000).
[CrossRef]

Ratzlaff, K. L.

J. V. Sweedler, K. L. Ratzlaff, and M. B. Denton, Charge-Transfer Devices in Spectroscopy (Wiley, 1994).

Reich, R. K.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, and V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10 000 Å,” Rev. Sci. Instrum. 61, 2744-2746 (1990).
[CrossRef]

Reilly, D. M.

Ricker, G. R.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, and V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10 000 Å,” Rev. Sci. Instrum. 61, 2744-2746 (1990).
[CrossRef]

Roblin, A.

Rozé, C.

Sadler, B. M.

Shapiro, J. H.

Sweedler, J. V.

J. V. Sweedler, K. L. Ratzlaff, and M. B. Denton, Charge-Transfer Devices in Spectroscopy (Wiley, 1994).

Tanzi, E. G.

P. Bergamini, G. Bonelli, E. G. Tanzi, M. Uslenghi, L. Poletto, and G. Tondello, “A fast readout and processing electronics for photon counting intensified charge-coupled device,” Rev. Sci. Instrum. 71, 1841-1848 (2000).
[CrossRef]

Tondello, G.

P. Bergamini, G. Bonelli, E. G. Tanzi, M. Uslenghi, L. Poletto, and G. Tondello, “A fast readout and processing electronics for photon counting intensified charge-coupled device,” Rev. Sci. Instrum. 71, 1841-1848 (2000).
[CrossRef]

Twichell, J. C.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, and V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10 000 Å,” Rev. Sci. Instrum. 61, 2744-2746 (1990).
[CrossRef]

Uslenghi, M.

P. Bergamini, G. Bonelli, E. G. Tanzi, M. Uslenghi, L. Poletto, and G. Tondello, “A fast readout and processing electronics for photon counting intensified charge-coupled device,” Rev. Sci. Instrum. 71, 1841-1848 (2000).
[CrossRef]

Vishnevsky, G. I.

I. N. Dalinenko, A. V. Malyarov, G. I. Vishnevsky, M. G. Vydrevitch, V. G. Kossov, Leonid Y. Lazovsky, and S. V. Golovkin, “Design and fabrication technology of thinned backside-excited CCD imagers and the family of the intensified electron-bombarded CCD image tubes,” Nucl. Instrum. Methods A 387, 294-296 (1997).

Vydrevitch, M. G.

I. N. Dalinenko, A. V. Malyarov, G. I. Vishnevsky, M. G. Vydrevitch, V. G. Kossov, Leonid Y. Lazovsky, and S. V. Golovkin, “Design and fabrication technology of thinned backside-excited CCD imagers and the family of the intensified electron-bombarded CCD image tubes,” Nucl. Instrum. Methods A 387, 294-296 (1997).

Xu, Z.

Acta Electron. (1)

V. Chalmeton and P. Chevalier, “Pulse height distribution for single electron input,” Acta Electron. 14, 99-106 (1971).

Appl. Opt. (4)

Aviat. Week Space Technol. (1)

B. D. Nordwall, “UV sensor proposed as pilot landing aid,” Aviat. Week Space Technol. 147, 81-84 (1997).

IEEE Commun. Mag. (1)

Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46, 67-73(2008).

J. Opt. Soc. Am. A (1)

Nucl. Instrum. Methods A (1)

I. N. Dalinenko, A. V. Malyarov, G. I. Vishnevsky, M. G. Vydrevitch, V. G. Kossov, Leonid Y. Lazovsky, and S. V. Golovkin, “Design and fabrication technology of thinned backside-excited CCD imagers and the family of the intensified electron-bombarded CCD image tubes,” Nucl. Instrum. Methods A 387, 294-296 (1997).

Opt. Lett. (1)

Photochem. Photobiol. (1)

M. Blumthaler and W. Ambach, “Solar UVB albedo of various surfaces,” Photochem. Photobiol. 48, 85-88 (1988).

Proc. SPIE (8)

V. J. Norris, “Autonomous low cost electro-optical system that prevent runway incursion by providing direct warnings to flight crews,” Proc. SPIE 5081, 109-123 (2003).

V. J. Norris, “FAA evaluation of UV technology for runway incursion prevention and low visibility landings,” Proc. SPIE 5081, 1-10 (2003).

M. Lindner, S. Elstein, and P. Lindner, “Solar blind and bispectral imaging with ICCD, BCCD and EBCCD cameras,” Proc. SPIE 3434, 22-31 (1998).

V. J. Norris, R. S. Evans, and D. G. Currie, “Performance comparison of visual, infrared and ultraviolet sensors for landing aircraft in fog,” Proc. SPIE 3691, 2-20 (1999).

V. J. Norris and D. G. Currie, “ Autonomous UV-enhanced vision system for landing on CAT I runways during CAT IIIa weather conditions,” Proc. SPIE 4363, 9-20 (2001).

V. J. Norris, “Autonomous UV-enhanced vision system that prevents runway incursions at medium size airports,” Proc. SPIE 4363,67-75 (2001).

D. J. Meyer, P. A. Acevedo, and B. E. O'Toole, “Improvements to real-time ultraviolet scene simulation for sensor testing,” Proc. SPIE 3368, 310-320 (1998).

R. H. Giza, P. A. Acevedo, and J. D. Bliss, “Ultraviolet scene simulation for missile approach warning system testing,” Proc. SPIE 3084, 282-291 (1997).

Rev. Sci. Instrum. (3)

J. R. Janesick, T. Elliott, H. H. Marsh, S. Collins, J. K. McCarthy, and M. M. Blouke, “Potential of CCDs for UV and x-ray plasma diagnostics (invited),” Rev. Sci. Instrum. 56, 796-801 (1985).
[CrossRef]

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, and V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10 000 Å,” Rev. Sci. Instrum. 61, 2744-2746 (1990).
[CrossRef]

P. Bergamini, G. Bonelli, E. G. Tanzi, M. Uslenghi, L. Poletto, and G. Tondello, “A fast readout and processing electronics for photon counting intensified charge-coupled device,” Rev. Sci. Instrum. 71, 1841-1848 (2000).
[CrossRef]

Other (4)

C. Lavigne, “Etude théorique et expérimentale de la propagation du rayonnement UV dans la basse atmosphère,” Ph.D. dissertation (Université de Rouen, 2001).

Aeronautical Information Manual: Official Guide to Basic Flight Information and ATC Procedures, Change 1, U.S. Department of Transportation, Federal Aviation Administration, 31 July 2008.

L. W. Abreu and G. P. Anderson, “The MODTRAN 2/3 Report and LOWTRAN 7 Model,” Ontar Corporation for PL/GPOS Phillips Laboratory Geophysics Directorate (1996).

J. V. Sweedler, K. L. Ratzlaff, and M. B. Denton, Charge-Transfer Devices in Spectroscopy (Wiley, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometry of the one source axisymmetric case. C is the last photon collision location, and x k is the photon path direction before the collision.

Fig. 2
Fig. 2

η parameter relative to distance d between S and S in case of Henyey–Greenstein phase function P hg ( θ ) = 1 4 π × 1 g 2 / [ ( 1 + g 2 2 g cos ( θ ) ) 3 / 2 ] . g takes two different values equal to 0.95 and 0.5. Extinction coefficient k ext is fixed to 11 km 1 and two scattering albedos ω equal to 0.4 and 0.95 are taken into account.

Fig. 3
Fig. 3

(a) Angular dependency of runway light intensity in polar coordinates. Horizontal plan. (b) Positioning of light sources along the runway.

Fig. 4
Fig. 4

MODTRAN phase functions relative to scattering angles for both atmospheric conditions.

Fig. 5
Fig. 5

Basic principle of the ICCD camera with the different gains and sources of noise.

Fig. 6
Fig. 6

Example of pulse height distribution (PHD) from a two-stage MCP. Pulse height ratio (PHR) is equal to 120%.

Fig. 7
Fig. 7

Comparison between averaged radiances calculated with the MC code and the semi-empirical method at 280 nm for a source–sensor distance equal to (a)  100 m , (b)  700 m . Details for small angles are also shown.

Fig. 8
Fig. 8

Event number (digital counts) received in the 247.5 287.5 nm spectral band for a distance from touchdown equal to 800 m in the case of CAT3A conditions for a (a) nonintensified CCD camera and (b) 2 MCP ICCD camera.

Fig. 9
Fig. 9

Histograms relative to images shown in (a) Fig. 8a with a mean value equal to 2.49 and a standard deviation σ of 3.78 , (b) Fig. 8b with a mean value equal to 7.9 × 10 4 and a standard deviation σ of 1.2 × 10 5 , (c) Fig. 8b. Details for the low signal pixels are shown.

Fig. 10
Fig. 10

P D and P F as functions of the relative threshold ( S / σ ) in the case of CAT3A conditions for a sequence made up of three images and two detection distances for a (a) nonintensified CCD, (b) 1 MCP ICCD, (c) 2 MCP ICCD.

Tables (4)

Tables Icon

Table 1 MODTRAN Atmospheric Parameters for CAT1 and CAT3A Conditions

Tables Icon

Table 2 Atmospheric Input Data for the Semi-empirical Model and the Monte Carlo Code

Tables Icon

Table 3 Aerosol Properties at 280 nm for the Two Atmospheric Conditions a

Tables Icon

Table 4 Characteristics of the Three Sensors

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

T ( τ , Θ ) = exp ( τ ) + j = 1 N T k = 1 n col j H j k W j k N T 4 π φ 0 φ 0 + δ φ 0 θ 0 θ 0 + δ θ 0 S ( cos θ ) sin θ d θ d φ .
T ( τ , Θ ) = exp ( τ ) + d 2 I ¯ S S ( cos θ 0 ) 0 2 π d φ 0 Θ / 2 d γ B ( τ , γ , φ ) | cos γ | sin γ .
B ¯ ( τ , γ ) = 1 2 π 0 2 π B ( τ , γ , φ ) d φ .
E dir = I s ( cos θ 0 ) × exp ( τ ) d 2 × S d S p ,
E p scat = B ( τ , γ p , φ p ) × δ Ω p cos γ p × S d S p ,
τ ( S S ) = exp ( k abs + η k scat ) d ,
η ( S S ) = 2 π θ i π f ( θ , S S ) sin θ d θ ,
f ( θ , S S ) P ( cos θ )   as long as S S ¯ 0 ,
f ( θ , S S ) 1 4 π   as long as S S ¯ .
η ( S S ) 1   as long as   ω 0 ,
η ( S S ) 0   as long as   ω 1 ,
P D = P d 2 m .
P F = 1 ( 1 P fa m ) N p ,
P D 0.95 , P F < 10 6 .

Metrics