Abstract

We present a database containing light scattering quantities of randomly oriented dielectric spheroidal particles in the resonance region. The database has been generated by using a thoroughly tested T-matrix method implementation. The data possess a defined accuracy so that they can be used as benchmarks for electromagnetic and light scattering computations of spheroids. Within its parameter range the database may also be applied as a fast tool to investigate the scattering properties of nonspherical particles and to verify assumptions or statements concerning their scattering behavior. A user interface has been developed to facilitate the data access. It also provides some additional functionalities such as interpolations between data or the computation of size-averaged scattering quantities. A detailed description of the database and the user interface is given, followed by examples illustrating their capabilities and handling. On request, the database including the documentation is available, free of charge, on a CD-ROM.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Markowicz, P. J. Flatau, A. M. Vogelmann, P. K. Quinn, and E. J. Welton, “Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere,” Q. J. R. Meteorol. Soc. 129, 2927-2947 (2003).
    [CrossRef]
  2. S. Otto, E. Bierwirth, B. Weinzierl, K. Kandler, M. Esselborn, M. Tesche, A. Schladitz, M. Wendisch, and T. Trautmann, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal particles,” Tellus B 61, 270-296 (2009).
    [CrossRef]
  3. Y. J. Kasai, J. Urban, C. Takahashi, S. Hoshino, K. Takahashi, J. Inatani, M. Shiotani, and H. Masuko, “Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES,” IEEE Trans. Geosci. Remote Sensing 44, 676-693 (2006).
    [CrossRef]
  4. M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
    [CrossRef]
  5. C. Emde, S. A. Buehler, P. Eriksson, and T. R. Sreerekha, “The effect of cirrus clouds on microwave limb radiances,” Atmos. Res. 72, 383-401 (2004).
    [CrossRef]
  6. P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512-5523 (2005).
    [CrossRef] [PubMed]
  7. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
    [CrossRef]
  8. H. Volten, O. Munoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191-206(2005).
    [CrossRef]
  9. J. Wauer, K. Schmidt, T. Rother, T. Ernst, and M. Hess, “Two software tools for plane-wave scattering on nonspherical particles in the German Aerospace Center's virtual laboratory,” Appl. Opt. 43, 6371-6379 (2004).
    [CrossRef] [PubMed]
  10. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825-839 (1971).
    [CrossRef]
  11. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871-882(1991).
    [CrossRef]
  12. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).
  13. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  14. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).
  15. N. G. Khlebtsov, “Orientational averaging of light-scattering observables in the T-matrix approach,” Appl. Opt. 31, 5359-5365 (1992).
    [CrossRef] [PubMed]
  16. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
    [CrossRef]
  17. K. Sassen, “lidar backscatter depolarization technique for cloud and aerosol research,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 393-416.
    [CrossRef]

2009

S. Otto, E. Bierwirth, B. Weinzierl, K. Kandler, M. Esselborn, M. Tesche, A. Schladitz, M. Wendisch, and T. Trautmann, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal particles,” Tellus B 61, 270-296 (2009).
[CrossRef]

2006

Y. J. Kasai, J. Urban, C. Takahashi, S. Hoshino, K. Takahashi, J. Inatani, M. Shiotani, and H. Masuko, “Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES,” IEEE Trans. Geosci. Remote Sensing 44, 676-693 (2006).
[CrossRef]

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
[CrossRef]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

2005

H. Volten, O. Munoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191-206(2005).
[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512-5523 (2005).
[CrossRef] [PubMed]

2004

2003

K. M. Markowicz, P. J. Flatau, A. M. Vogelmann, P. K. Quinn, and E. J. Welton, “Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere,” Q. J. R. Meteorol. Soc. 129, 2927-2947 (2003).
[CrossRef]

1992

1991

1971

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825-839 (1971).
[CrossRef]

Barber, P. W.

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
[CrossRef]

Baum, B. A.

Bierwirth, E.

S. Otto, E. Bierwirth, B. Weinzierl, K. Kandler, M. Esselborn, M. Tesche, A. Schladitz, M. Wendisch, and T. Trautmann, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal particles,” Tellus B 61, 270-296 (2009).
[CrossRef]

Bingham, G.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
[CrossRef]

Buehler, S. A.

C. Emde, S. A. Buehler, P. Eriksson, and T. R. Sreerekha, “The effect of cirrus clouds on microwave limb radiances,” Atmos. Res. 72, 383-401 (2004).
[CrossRef]

de Haan, J. F.

H. Volten, O. Munoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191-206(2005).
[CrossRef]

Dubovik, O.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Eck, T. F.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Emde, C.

C. Emde, S. A. Buehler, P. Eriksson, and T. R. Sreerekha, “The effect of cirrus clouds on microwave limb radiances,” Atmos. Res. 72, 383-401 (2004).
[CrossRef]

Eriksson, P.

C. Emde, S. A. Buehler, P. Eriksson, and T. R. Sreerekha, “The effect of cirrus clouds on microwave limb radiances,” Atmos. Res. 72, 383-401 (2004).
[CrossRef]

Ernst, T.

Esselborn, M.

S. Otto, E. Bierwirth, B. Weinzierl, K. Kandler, M. Esselborn, M. Tesche, A. Schladitz, M. Wendisch, and T. Trautmann, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal particles,” Tellus B 61, 270-296 (2009).
[CrossRef]

Flatau, P. J.

K. M. Markowicz, P. J. Flatau, A. M. Vogelmann, P. K. Quinn, and E. J. Welton, “Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere,” Q. J. R. Meteorol. Soc. 129, 2927-2947 (2003).
[CrossRef]

Fu, Q.

Hess, M.

Hill, S. C.

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
[CrossRef]

Holben, B. N.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Hoshino, S.

Y. J. Kasai, J. Urban, C. Takahashi, S. Hoshino, K. Takahashi, J. Inatani, M. Shiotani, and H. Masuko, “Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES,” IEEE Trans. Geosci. Remote Sensing 44, 676-693 (2006).
[CrossRef]

Hovenier, J. W.

H. Volten, O. Munoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191-206(2005).
[CrossRef]

Hu, Y. X.

Huang, H.-L.

Hyde, C. R.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
[CrossRef]

Inatani, J.

Y. J. Kasai, J. Urban, C. Takahashi, S. Hoshino, K. Takahashi, J. Inatani, M. Shiotani, and H. Masuko, “Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES,” IEEE Trans. Geosci. Remote Sensing 44, 676-693 (2006).
[CrossRef]

Johnson, D. G.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
[CrossRef]

Jucks, K.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
[CrossRef]

Kandler, K.

S. Otto, E. Bierwirth, B. Weinzierl, K. Kandler, M. Esselborn, M. Tesche, A. Schladitz, M. Wendisch, and T. Trautmann, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal particles,” Tellus B 61, 270-296 (2009).
[CrossRef]

Kasai, Y. J.

Y. J. Kasai, J. Urban, C. Takahashi, S. Hoshino, K. Takahashi, J. Inatani, M. Shiotani, and H. Masuko, “Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES,” IEEE Trans. Geosci. Remote Sensing 44, 676-693 (2006).
[CrossRef]

Kattawar, G. W.

Khlebtsov, N. G.

Kong, J. A.

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).

Kratz, D. P.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
[CrossRef]

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).

Lapyonok, T.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Latvakoski, H.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
[CrossRef]

Leon, J.-F.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Liu, X.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
[CrossRef]

Markowicz, K. M.

K. M. Markowicz, P. J. Flatau, A. M. Vogelmann, P. K. Quinn, and E. J. Welton, “Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere,” Q. J. R. Meteorol. Soc. 129, 2927-2947 (2003).
[CrossRef]

Masuko, H.

Y. J. Kasai, J. Urban, C. Takahashi, S. Hoshino, K. Takahashi, J. Inatani, M. Shiotani, and H. Masuko, “Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES,” IEEE Trans. Geosci. Remote Sensing 44, 676-693 (2006).
[CrossRef]

Mishchenko, M.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Mishchenko, M. I.

Mlynczak, M. G.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
[CrossRef]

Munoz, O.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

H. Volten, O. Munoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191-206(2005).
[CrossRef]

Otto, S.

S. Otto, E. Bierwirth, B. Weinzierl, K. Kandler, M. Esselborn, M. Tesche, A. Schladitz, M. Wendisch, and T. Trautmann, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal particles,” Tellus B 61, 270-296 (2009).
[CrossRef]

Quinn, P. K.

K. M. Markowicz, P. J. Flatau, A. M. Vogelmann, P. K. Quinn, and E. J. Welton, “Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere,” Q. J. R. Meteorol. Soc. 129, 2927-2947 (2003).
[CrossRef]

Rother, T.

Sassen, K.

K. Sassen, “lidar backscatter depolarization technique for cloud and aerosol research,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 393-416.
[CrossRef]

Schladitz, A.

S. Otto, E. Bierwirth, B. Weinzierl, K. Kandler, M. Esselborn, M. Tesche, A. Schladitz, M. Wendisch, and T. Trautmann, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal particles,” Tellus B 61, 270-296 (2009).
[CrossRef]

Schmidt, K.

Shin, R. T.

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).

Shiotani, M.

Y. J. Kasai, J. Urban, C. Takahashi, S. Hoshino, K. Takahashi, J. Inatani, M. Shiotani, and H. Masuko, “Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES,” IEEE Trans. Geosci. Remote Sensing 44, 676-693 (2006).
[CrossRef]

Sinyuk, A.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Slutsker, I.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Sorokin, M.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Sreerekha, T. R.

C. Emde, S. A. Buehler, P. Eriksson, and T. R. Sreerekha, “The effect of cirrus clouds on microwave limb radiances,” Atmos. Res. 72, 383-401 (2004).
[CrossRef]

Takahashi, C.

Y. J. Kasai, J. Urban, C. Takahashi, S. Hoshino, K. Takahashi, J. Inatani, M. Shiotani, and H. Masuko, “Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES,” IEEE Trans. Geosci. Remote Sensing 44, 676-693 (2006).
[CrossRef]

Takahashi, K.

Y. J. Kasai, J. Urban, C. Takahashi, S. Hoshino, K. Takahashi, J. Inatani, M. Shiotani, and H. Masuko, “Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES,” IEEE Trans. Geosci. Remote Sensing 44, 676-693 (2006).
[CrossRef]

Tesche, M.

S. Otto, E. Bierwirth, B. Weinzierl, K. Kandler, M. Esselborn, M. Tesche, A. Schladitz, M. Wendisch, and T. Trautmann, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal particles,” Tellus B 61, 270-296 (2009).
[CrossRef]

Traub, W. A.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
[CrossRef]

Trautmann, T.

S. Otto, E. Bierwirth, B. Weinzierl, K. Kandler, M. Esselborn, M. Tesche, A. Schladitz, M. Wendisch, and T. Trautmann, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal particles,” Tellus B 61, 270-296 (2009).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).

Tsang, L.

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).

Urban, J.

Y. J. Kasai, J. Urban, C. Takahashi, S. Hoshino, K. Takahashi, J. Inatani, M. Shiotani, and H. Masuko, “Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES,” IEEE Trans. Geosci. Remote Sensing 44, 676-693 (2006).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

van der Zande, W. J.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

H. Volten, O. Munoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191-206(2005).
[CrossRef]

Vassen, W.

H. Volten, O. Munoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191-206(2005).
[CrossRef]

Veihelmann, B.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Vogelmann, A. M.

K. M. Markowicz, P. J. Flatau, A. M. Vogelmann, P. K. Quinn, and E. J. Welton, “Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere,” Q. J. R. Meteorol. Soc. 129, 2927-2947 (2003).
[CrossRef]

Volten, H.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

H. Volten, O. Munoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191-206(2005).
[CrossRef]

Waterman, P. C.

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825-839 (1971).
[CrossRef]

Waters, L. B. F. M.

H. Volten, O. Munoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191-206(2005).
[CrossRef]

Watson, M.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
[CrossRef]

Wauer, J.

Wei, H.

Weinzierl, B.

S. Otto, E. Bierwirth, B. Weinzierl, K. Kandler, M. Esselborn, M. Tesche, A. Schladitz, M. Wendisch, and T. Trautmann, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal particles,” Tellus B 61, 270-296 (2009).
[CrossRef]

Wellard, S. J.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
[CrossRef]

Welton, E. J.

K. M. Markowicz, P. J. Flatau, A. M. Vogelmann, P. K. Quinn, and E. J. Welton, “Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere,” Q. J. R. Meteorol. Soc. 129, 2927-2947 (2003).
[CrossRef]

Wendisch, M.

S. Otto, E. Bierwirth, B. Weinzierl, K. Kandler, M. Esselborn, M. Tesche, A. Schladitz, M. Wendisch, and T. Trautmann, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal particles,” Tellus B 61, 270-296 (2009).
[CrossRef]

Yang, P.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512-5523 (2005).
[CrossRef] [PubMed]

Appl. Opt.

Atmos. Res.

C. Emde, S. A. Buehler, P. Eriksson, and T. R. Sreerekha, “The effect of cirrus clouds on microwave limb radiances,” Atmos. Res. 72, 383-401 (2004).
[CrossRef]

Geophys. Res. Lett.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and X. Liu, “First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704 (2006).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing

Y. J. Kasai, J. Urban, C. Takahashi, S. Hoshino, K. Takahashi, J. Inatani, M. Shiotani, and H. Masuko, “Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES,” IEEE Trans. Geosci. Remote Sensing 44, 676-693 (2006).
[CrossRef]

J. Geophys. Res.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

J. Opt. Soc. Am. A

J. Quant. Spectrosc. Radiat. Transfer

H. Volten, O. Munoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191-206(2005).
[CrossRef]

Phys. Rev. D

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825-839 (1971).
[CrossRef]

Q. J. R. Meteorol. Soc.

K. M. Markowicz, P. J. Flatau, A. M. Vogelmann, P. K. Quinn, and E. J. Welton, “Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere,” Q. J. R. Meteorol. Soc. 129, 2927-2947 (2003).
[CrossRef]

Tellus B

S. Otto, E. Bierwirth, B. Weinzierl, K. Kandler, M. Esselborn, M. Tesche, A. Schladitz, M. Wendisch, and T. Trautmann, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal particles,” Tellus B 61, 270-296 (2009).
[CrossRef]

Other

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
[CrossRef]

K. Sassen, “lidar backscatter depolarization technique for cloud and aerosol research,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 393-416.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Extinction efficiency σ eff ext (top) and direct-polarized backscattering efficiency σ dir , eff back (bottom) as a function of the volume-equivalent size parameter k r eqv ( v ) for a spherical scatterer with a refractive index n = 1.33 . The resolution is Δ k r eqv ( v ) = 0.025 .

Fig. 2
Fig. 2

Comparison of different resolutions of the backscattering efficiency σ dir , eff back as a function of the volume-equivalent size parameter k r eqv ( v ) within the range [7.5,12.5] for a spherical scatterer with n = 1.33 . The solid curves in Figs. 2a, 2b, 2c represent the reference with a size parameter resolution Δ k r eqv ( v ) = 0.025 . The crosses are the points at which the computations have been performed for the different resolutions Δ k r eqv ( v ) = ( 0.6 , 0.4 , 0.2 ) , and the corresponding dashed curves are their cubic spline interpolations. The relative error of the interpolation of Fig. 2c is shown in Fig. 2d.

Fig. 3
Fig. 3

(a) Phase function p ( θ ) of a sphere ( n = 1.6 , k r eqv ( v ) = 20 ) at an angular resolution of 0.25 ° An approximation of this phase function is obtained if started from a lower resolution of 0.75 ° in the forward and backward direction and 2.5 ° in the side scattering direction and interpolated via cubic splines to the higher resolution of 0.25 ° . The resulting relative error is plotted in (b).

Fig. 4
Fig. 4

(a) Phase function p ( θ ) of a sphere ( n = 1.6 , k r eqv ( v ) = 40 ) at an angular resolution of 0.25 ° . An approximation of this phase function is obtained if started from a lower resolution of 0.5 ° in the forward and backward direction and 1.5 ° in the side scattering direction and interpolated via cubic splines to the higher resolution of 0.25 ° . The resulting relative error is plotted in (b).

Fig. 5
Fig. 5

(a) Phase functions p ( θ ) of a randomly oriented spheroid with n = 1.8 , a v = 1.5 , and k r eqv ( v ) = 39.52 ( r eqv ( v ) = 2.23 μm ) linearly interpolated by use of Eq. (23) between the volume-equivalent size parameters k r eqv ( v ) = 39.4 and k r eqv ( v ) = 39.6 . The relative error of this phase function to the one calculated at the desired size parameter k r eqv ( v ) = 39.52 is shown in (b).

Fig. 6
Fig. 6

Backscattering efficiency σ dir , eff back + σ x , eff back , extinction efficiency σ eff ext , and lidar ratio S of a randomly oriented oblate spheroid with a v = 0.67 (dotted curves), a sphere (solid curves), and a prolate spheroid with a v = 1.5 (dashed curves), all having a refractive index n = 1.5 + i · 0.05 , as a function of the volume-equivalent size parameter k r eqv ( v ) .

Fig. 7
Fig. 7

Monomodal log-normal size distribution function (27) with r 1 = 1.3 μm and σ 1 = 1.3 .

Fig. 8
Fig. 8

Phase functions p ( θ ) of spheres (solid line) and randomly oriented spheroids (dashed line) averaged over the particle size in using the size distribution function of Fig. 7 at a wavelength λ = 0.355 μm (volume-equivalent size parameter up to 40). All aspect ratios of Table 1 with the same weight are present in the mixture of the spheroids. The scatterers have a refractive index n = 1.6 throughout.

Fig. 9
Fig. 9

Monomodal log-normal size distribution function (27) with r 1 = 1.3 μm and σ 1 = 1.2 (solid line) and a rough discretization of this distribution function to a size class distribution function (dashed line).

Fig. 10
Fig. 10

Phase functions p ( θ ) of spheres averaged over the particle size in using the monomodal log-normal size distribution function of Fig. 9 [solid line in (a)] and the size class distribution function of Fig. 9 [dashed line in (a)]. The spheres have a refractive index n = 1.5 + i · 0.001 at a wavelength λ = 0.355 μm (volume-equivalent size parameter up to 40). In (b) the relative error of the phase function based on the size class distribution function is shown.

Fig. 11
Fig. 11

Phase functions p ( θ ) of randomly oriented spheroids averaged over the particle size in using the monomodal log-normal size distribution function of Fig. 9 [solid line in (a)] and the size class distribution function of Fig. 9 [dashed line in (a)]. The spheroids have an aspect ratio a v = 1.3 and a refractive index n = 1.5 + i · 0.001 at a wavelength λ = 0.355 μm (volume-equivalent size parameter up to 40). In (b) the relative error of the phase function based on the size class distribution function is shown.

Fig. 12
Fig. 12

Phase functions p ( θ ) of randomly oriented spheroids averaged over the particle size in using the monomodal log-normal size distribution function of Fig. 9 [solid line in (a)] and the size class distribution function of Fig. 9 [dashed line in (a)]. The spheroids have an aspect ratio a v = 1.5 and a refractive index n = 1.5 + i · 0.001 at a wavelength λ = 0.355 μm (volume-equivalent size parameter up to 40). In Fig. 12b the relative error of the phase function based on the size class distribution function is shown.

Fig. 13
Fig. 13

Backscattering depolarization σ x , eff back / ( σ dir , eff back + σ x , eff back ) as a function of the aspect ratio a v and the volume-equivalent size parameter k r eqv ( v ) for different refractive indices n.

Fig. 14
Fig. 14

Asymmetry parameter g as a function of the aspect ratio a v and the volume-equivalent size parameter k r eqv ( v ) for different refractive indices n.

Tables (2)

Tables Icon

Table 1 Refractive Indices n and Aspect Ratios a v Present in the Database

Tables Icon

Table 2 Angular Resolution of the Phase Function Depending on the Volume-Equivalent Size Parameter k r eqv ( v ) and the Region of the Scattering Angle θ

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

E inc ( k r ) = τ = 1 2 l = l cut l cut n = | l | n cut a τ n l · R g Ψ τ n l ( k r ) ,
E scat ( k r ) = τ = 1 2 l = l cut l cut n = | l | n cut f τ n l · Ψ τ n l ( k r ) .
f = T · a .
T = Q 1 · R g Q ,
E inc ( k r ) = e 0 · exp ( i k z ) ,
E v s = E ϕ s ,
E h s = E θ s ,
( E v s E h s ) = exp ( i k r ) r · ( F v v ( θ , ϕ ) F v h ( θ , ϕ ) F h v ( θ , ϕ ) F h h ( θ , ϕ ) ) · ( E v inc E h inc ) .
M or : = 1 8 π 2 · 0 2 π d ϕ p 0 π d θ p sin θ p 0 2 π d ψ p M ( ϕ p , θ p , ψ p )
σ eff ext = σ ext q = 4 π k q · I m F α α ( θ = 0 ° , ϕ = 0 ° ) or , α = ( v , h ) ,
σ eff sca = σ sca q = 1 q 0 2 π d ϕ 0 π d θ sin θ ( | F α α ( θ , ϕ ) | 2 or + | F β α ( θ , ϕ ) | 2 or ) , α β ,
σ eff abs = σ abs q = σ eff ext σ eff sca ,
ω = σ sca σ ext ,
P ( θ ) = k 2 2 · ( | F h h ( θ , ϕ = 0 ° / 180 ° ) | 2 or + | F h v ( θ , ϕ = 0 ° / 180 ° ) | 2 or + | F v h ( θ , ϕ = 0 ° / 180 ° ) | 2 or + | F v v ( θ , ϕ = 0 ° / 180 ° ) | 2 or ) ,
const · 0 π d θ sin θ P ( θ ) = 0 π d θ sin θ p ( θ ) = 2 ,
g = 1 2 1 1 d cos θ cos θ p ( θ ) ,
σ dir , eff back = 1 q · σ dir back = k 2 q · | F α α ( θ = 180 ° , ϕ = 0 ° ) | 2 or , α = ( v , h ) ,
σ x , eff back = 1 q · σ x back = k 2 q · | F α β ( θ = 180 ° , ϕ = 0 ° ) | 2 or , α β .
( x b ) 2 + ( y b ) 2 + ( z a ) 2 = 1.
σ = w l · σ l + w u · σ u .
w l = k r u k r eqv ( v ) k r u k r l ,
w u = k r eqv ( v ) k r l k r u k r l .
p ( θ ) = w l · σ l scat · p l ( θ ) + w u · σ u scat · p u ( θ ) σ scat ,
g = w l · σ l scat · g l + w u · σ u scat · g u σ scat .
N ( r eqv ( v ) , a v ) = N r ( r eqv ( v ) ) · N a v ( a v )
N r ( r eqv ( v ) ) = r eqv ( v ) α · exp ( α · r eqv ( v ) γ γ · r c γ ) ,
N r ( r eqv ( v ) ) = r eqv ( v ) 1 · exp [ ( ln r eqv ( v ) ln r 1 ) 2 2 ln 2 σ 1 ] ,
N r ( r eqv ( v ) ) = { 1 , 0 r eqv ( v ) r 1 ( r / r 1 ) α , r 1 r eqv ( v ) r 2 0 , r 2 < r eqv ( v ) .
N a v ( a v ) = { N 1 a v = N a v ( 0.67 ) N 2 a v = N a v ( 0.77 ) N 7 a v = N a v ( 1.5 )
X r , a v = 1 N r , a v i N i a v · N r ( r eqv ( v ) ) · X ( r eqv ( v ) , a v ) d r eqv ( v )
N r , a v = i N i a v · N r ( r eqv ( v ) ) d r eqv ( v ) .

Metrics