Abstract

A new type of convex Fresnel lens for linear photovoltaic concentration systems is presented. The lens designed with this method reaches 100% of geometrical optical efficiency, and the ratio (Aperture area)/(Receptor area) is up to 75% of the theoretical limit. The main goal of the design is high uniformity of the radiation on the cell surface for each input angle inside the acceptance. The ratio between the maximum and the minimum irradiance on points of the solar cell is less than 2. The lens has been designed with the simultaneous multiple surfaces (SMS) method of nonimaging optics, and ray tracing techniques have been used to characterize its performance for linear symmetry systems.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Luque, G. L. Araújo, A. Cuevas, E. Lorenzo, J. C. Miñano, J. M. Ruiz, and G. Sala, Solar Cells and Optics for Photovoltaic Concentration, Series on Optics and Optoelectronics (Taylor & Francis, 1989).
  2. R. Winston, J. C. Miñano, and P. G. Benítez, Nonimaging Optics (Academic, 2005).
  3. R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators, Springer Series in Optical Sciences (Springer, 2001).
  4. R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of nonimaging Fresnel lens for solar concentrators,” Procedings of the Symposium on Energy Engineering in the 21st Century (SEE 2000) (Hong Kong Univ. of Science and Technology Kowloon, 2000), Vol. 2, pp. 759-765.
  5. E. M. Kritchman, A. A. Friesem, and G. Yekutieli, “Highly concentrating Fresnel lenses,” Appl. Opt. 18, pp. 2688-2695(1979).
    [CrossRef] [PubMed]
  6. P. Benitez, A. Cvetkovic, R. Winston, G. Díaz, L. Reed, J. Cisneros, A. Tovar, A. Ritschel, and J. Wright, “High-concentration mirror-based Kohler integrating system for tandem solar cells”, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 690-693.
    [CrossRef]
  7. E. Lorenzo and A. Luque, “Fresnel lens analysis for solar energy applications,” Appl. Opt. Vol. 20, 2941-2945 (1981).
    [CrossRef] [PubMed]
  8. J. C. Miñano and J. C. González, “New method of design of nonimaging concentrators,” Appl. Opt. 31, 3051-3060(1992).
    [CrossRef] [PubMed]
  9. J. C. Miñano, J. C. González, and P. Benítez, “A high gain, compact, nonimaging concentrador,” Appl. Opt. 34, 7850-7856(1995).
    [CrossRef] [PubMed]
  10. J. C. Miñano, P. Benítez, and J. C. González, “RX: a nonimaging concentrator,” Appl. Opt. 34, 2226-2235.
    [PubMed]

1995

1992

1981

1979

Akisawa, A.

R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of nonimaging Fresnel lens for solar concentrators,” Procedings of the Symposium on Energy Engineering in the 21st Century (SEE 2000) (Hong Kong Univ. of Science and Technology Kowloon, 2000), Vol. 2, pp. 759-765.

Araújo, G. L.

A. Luque, G. L. Araújo, A. Cuevas, E. Lorenzo, J. C. Miñano, J. M. Ruiz, and G. Sala, Solar Cells and Optics for Photovoltaic Concentration, Series on Optics and Optoelectronics (Taylor & Francis, 1989).

Benitez, P.

P. Benitez, A. Cvetkovic, R. Winston, G. Díaz, L. Reed, J. Cisneros, A. Tovar, A. Ritschel, and J. Wright, “High-concentration mirror-based Kohler integrating system for tandem solar cells”, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 690-693.
[CrossRef]

Benítez, P.

Benítez, P. G.

R. Winston, J. C. Miñano, and P. G. Benítez, Nonimaging Optics (Academic, 2005).

Cisneros, J.

P. Benitez, A. Cvetkovic, R. Winston, G. Díaz, L. Reed, J. Cisneros, A. Tovar, A. Ritschel, and J. Wright, “High-concentration mirror-based Kohler integrating system for tandem solar cells”, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 690-693.
[CrossRef]

Cuevas, A.

A. Luque, G. L. Araújo, A. Cuevas, E. Lorenzo, J. C. Miñano, J. M. Ruiz, and G. Sala, Solar Cells and Optics for Photovoltaic Concentration, Series on Optics and Optoelectronics (Taylor & Francis, 1989).

Cvetkovic, A.

P. Benitez, A. Cvetkovic, R. Winston, G. Díaz, L. Reed, J. Cisneros, A. Tovar, A. Ritschel, and J. Wright, “High-concentration mirror-based Kohler integrating system for tandem solar cells”, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 690-693.
[CrossRef]

Díaz, G.

P. Benitez, A. Cvetkovic, R. Winston, G. Díaz, L. Reed, J. Cisneros, A. Tovar, A. Ritschel, and J. Wright, “High-concentration mirror-based Kohler integrating system for tandem solar cells”, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 690-693.
[CrossRef]

Friesem, A. A.

González, J. C.

Kashiwagi, T.

R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of nonimaging Fresnel lens for solar concentrators,” Procedings of the Symposium on Energy Engineering in the 21st Century (SEE 2000) (Hong Kong Univ. of Science and Technology Kowloon, 2000), Vol. 2, pp. 759-765.

Kritchman, E. M.

Leutz, R.

R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of nonimaging Fresnel lens for solar concentrators,” Procedings of the Symposium on Energy Engineering in the 21st Century (SEE 2000) (Hong Kong Univ. of Science and Technology Kowloon, 2000), Vol. 2, pp. 759-765.

R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators, Springer Series in Optical Sciences (Springer, 2001).

Lorenzo, E.

E. Lorenzo and A. Luque, “Fresnel lens analysis for solar energy applications,” Appl. Opt. Vol. 20, 2941-2945 (1981).
[CrossRef] [PubMed]

A. Luque, G. L. Araújo, A. Cuevas, E. Lorenzo, J. C. Miñano, J. M. Ruiz, and G. Sala, Solar Cells and Optics for Photovoltaic Concentration, Series on Optics and Optoelectronics (Taylor & Francis, 1989).

Luque, A.

E. Lorenzo and A. Luque, “Fresnel lens analysis for solar energy applications,” Appl. Opt. Vol. 20, 2941-2945 (1981).
[CrossRef] [PubMed]

A. Luque, G. L. Araújo, A. Cuevas, E. Lorenzo, J. C. Miñano, J. M. Ruiz, and G. Sala, Solar Cells and Optics for Photovoltaic Concentration, Series on Optics and Optoelectronics (Taylor & Francis, 1989).

Miñano, J. C.

J. C. Miñano, J. C. González, and P. Benítez, “A high gain, compact, nonimaging concentrador,” Appl. Opt. 34, 7850-7856(1995).
[CrossRef] [PubMed]

J. C. Miñano and J. C. González, “New method of design of nonimaging concentrators,” Appl. Opt. 31, 3051-3060(1992).
[CrossRef] [PubMed]

J. C. Miñano, P. Benítez, and J. C. González, “RX: a nonimaging concentrator,” Appl. Opt. 34, 2226-2235.
[PubMed]

R. Winston, J. C. Miñano, and P. G. Benítez, Nonimaging Optics (Academic, 2005).

A. Luque, G. L. Araújo, A. Cuevas, E. Lorenzo, J. C. Miñano, J. M. Ruiz, and G. Sala, Solar Cells and Optics for Photovoltaic Concentration, Series on Optics and Optoelectronics (Taylor & Francis, 1989).

Reed, L.

P. Benitez, A. Cvetkovic, R. Winston, G. Díaz, L. Reed, J. Cisneros, A. Tovar, A. Ritschel, and J. Wright, “High-concentration mirror-based Kohler integrating system for tandem solar cells”, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 690-693.
[CrossRef]

Ritschel, A.

P. Benitez, A. Cvetkovic, R. Winston, G. Díaz, L. Reed, J. Cisneros, A. Tovar, A. Ritschel, and J. Wright, “High-concentration mirror-based Kohler integrating system for tandem solar cells”, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 690-693.
[CrossRef]

Ruiz, J. M.

A. Luque, G. L. Araújo, A. Cuevas, E. Lorenzo, J. C. Miñano, J. M. Ruiz, and G. Sala, Solar Cells and Optics for Photovoltaic Concentration, Series on Optics and Optoelectronics (Taylor & Francis, 1989).

Sala, G.

A. Luque, G. L. Araújo, A. Cuevas, E. Lorenzo, J. C. Miñano, J. M. Ruiz, and G. Sala, Solar Cells and Optics for Photovoltaic Concentration, Series on Optics and Optoelectronics (Taylor & Francis, 1989).

Suzuki, A.

R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators, Springer Series in Optical Sciences (Springer, 2001).

R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of nonimaging Fresnel lens for solar concentrators,” Procedings of the Symposium on Energy Engineering in the 21st Century (SEE 2000) (Hong Kong Univ. of Science and Technology Kowloon, 2000), Vol. 2, pp. 759-765.

Tovar, A.

P. Benitez, A. Cvetkovic, R. Winston, G. Díaz, L. Reed, J. Cisneros, A. Tovar, A. Ritschel, and J. Wright, “High-concentration mirror-based Kohler integrating system for tandem solar cells”, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 690-693.
[CrossRef]

Winston, R.

P. Benitez, A. Cvetkovic, R. Winston, G. Díaz, L. Reed, J. Cisneros, A. Tovar, A. Ritschel, and J. Wright, “High-concentration mirror-based Kohler integrating system for tandem solar cells”, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 690-693.
[CrossRef]

R. Winston, J. C. Miñano, and P. G. Benítez, Nonimaging Optics (Academic, 2005).

Wright, J.

P. Benitez, A. Cvetkovic, R. Winston, G. Díaz, L. Reed, J. Cisneros, A. Tovar, A. Ritschel, and J. Wright, “High-concentration mirror-based Kohler integrating system for tandem solar cells”, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 690-693.
[CrossRef]

Yekutieli, G.

Appl. Opt.

Other

P. Benitez, A. Cvetkovic, R. Winston, G. Díaz, L. Reed, J. Cisneros, A. Tovar, A. Ritschel, and J. Wright, “High-concentration mirror-based Kohler integrating system for tandem solar cells”, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 690-693.
[CrossRef]

A. Luque, G. L. Araújo, A. Cuevas, E. Lorenzo, J. C. Miñano, J. M. Ruiz, and G. Sala, Solar Cells and Optics for Photovoltaic Concentration, Series on Optics and Optoelectronics (Taylor & Francis, 1989).

R. Winston, J. C. Miñano, and P. G. Benítez, Nonimaging Optics (Academic, 2005).

R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators, Springer Series in Optical Sciences (Springer, 2001).

R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of nonimaging Fresnel lens for solar concentrators,” Procedings of the Symposium on Energy Engineering in the 21st Century (SEE 2000) (Hong Kong Univ. of Science and Technology Kowloon, 2000), Vol. 2, pp. 759-765.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Example of a lens profile. Concentration C = 6.9 , acceptance angle α = 5 ° , refraction index n = 1.5 . Receptor side L = 2 . The lens has been designed with thick grooves to show the profile clearly.

Fig. 2
Fig. 2

Profile and normal of the input and output surface of one groove. (a) Profile of the input surface of one groove. The points of normal discontinuity and the lobes can be seen in the curve. (b) The two components ( N x , N y ) of the normal vector of the surface. This vector points toward the inside of the lens.

Fig. 3
Fig. 3

Steps in the procedure of designing one groove. The points P 0 and P 1 can be freely selected by the designer and, when they are selected, the lobe is determined. The pieces of surface S 0 , S 1 , and S 2 are designed with the described procedure. These three pieces of surface form one lobe.

Fig. 4
Fig. 4

Selection of the initial points of the second lobe in the groove. When the design of one lobe is finished, the following step is the election of the initial points P 0 I and P 1 I of the new lobe. In the figure these points have been selected to maintain the continuity of the profile, but the normals of the surfaces are not continuous.

Fig. 5
Fig. 5

Design of the different lobes of the lens. Continuous surface. If the initial points of each lobe are selected as shown in Fig. 4, the designed surface is a continuous one, but not the normal.

Fig. 6
Fig. 6

Design of the different lobes of one groove and the beginning of the next groove. In the designs in this paper, the initial point of the input surface has been elected to maintain the continuity. The initial point of the output surface is sometimes elected to break the continuity. Each time the continuity of the surface is broken, there is a new groove. Each groove is formed by several lobes.

Fig. 7
Fig. 7

Iterative design procedure to obtain a symmetrical design. In this design method, the output bundle, unlike in the SMS method, is not known before the design. If the input and output étendues of the half-system are different, the design cannot be symmetrical. In (a) and (b) the étendues are different, and in (c) are similar.

Fig. 8
Fig. 8

Example 1, C = 27.7 , α = 1.5 ° , n = 1.5 . (a) Lens profile. (b) Relative transmission curve. (c) Relative irradiance distribution on cell surface for different angles. The cell is placed in [ 1 , 1 ] .

Fig. 9
Fig. 9

Example 2, C = 13.5 , α = 3 ° , n = 1.5 . (a) Lens profile. (b) Relative transmission curve. (c) Relative irradiance distribution on cell surface for different angles. The cell is placed in [ 1 , 1 ] .

Fig. 10
Fig. 10

Example 3, C = 6.45 , α = 6 ° , n = 1.5 . (a) Lens profile. (b) Relative transmission curve. (c) Relative irradiance distribution on cell surface for different angles. The cell is placed in [ 1 , 1 ] .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C 1 / sin ( α )
C 1 / sin 2 ( α )

Metrics