Abstract

The effects of the formation of an optical standing wave during femtosecond laser-induced forward transfer of transparent films is analyzed using a numerical interference model. The dependence of the intensity distribution on a number of easily controllable experimental parameters is investigated. Results of the model are compared to experimental studies of the transfer of gadolinium gallium oxide (GdGaO) with a polymer sacrificial layer. The model allows us to explain the observed variation in deposit morphology with the size of the air gap, and why forward transfer of the GdGaO was possible below the ablation thresholds of polymer and oxide.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bohandy, B. Kim, and F. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538-1539 (1986).
    [CrossRef]
  2. D. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86, 244103 (2005).
    [CrossRef]
  3. F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5, 1490-1494 (1987).
    [CrossRef]
  4. R. Baseman and N. Froberg, “Minimum fluence for laser blow-off of thin gold films at 248 and 532 nm,” Appl. Phys. Lett. 56, 1412-1414 (1990).
    [CrossRef]
  5. Z. Toth, Z. Kantor, P. Mogyorosi, and T. Szorenyi, “Surface patterning by pulsed laser induced transfer of metals and compounds,” Proc. SPIE 1279, 150-157 (1990).
    [CrossRef]
  6. H. Esrom, J. Zhang, U. Kogelschatz, and A. Pedraza, “New approach of a laser-induced forward transfer for deposition of patterned thin metal films,” Appl. Surf. Sci. 86, 202-207(1995).
    [CrossRef]
  7. I. Zergioti, D. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of cr,” Appl. Surf. Sci. 208-209, 177-180 (2003).
    [CrossRef]
  8. Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A 69, S275-S278 (1999).
    [CrossRef]
  9. R. Bahnisch, W. Gross, and A. Menschig, “Single-shot, high repetition rate metallic pattern transfer,” Microelectron. Eng. 50, 541-546 (2000).
    [CrossRef]
  10. B. Tan, K. Venkatakrishnan, and K. Tok, “Selective surface texturing using femtosecond pulsed laser induced forward transfer,” Appl. Surf. Sci. 207, 365-371 (2003).
    [CrossRef]
  11. L. Landstrom, J. Klimstein, G. Schrems, K. Piglmayer, and D. Bauerle, “Single-step patterning and the fabrication of contact masks by laser-induced forward transfer,” Appl. Phys. A 78, 537-548 (2004).
    [CrossRef]
  12. I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol. 36, 180-187 (1992).
  13. I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579-582 (1998).
    [CrossRef]
  14. H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of tio-au nanocomposite films for maskless patterning,” Appl. Phys. Lett. 86, 114104 (2005).
    [CrossRef]
  15. E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high- Tc ybacuo and bisrcacuo superconducting thin films,” J. Appl. Phys. 66, 457-459 (1989).
    [CrossRef]
  16. S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci. 86, 208-212 (1995).
    [CrossRef]
  17. S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology 17, 1184-1187(2006).
    [CrossRef]
  18. B. Thomas, A. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254, 1206-1210 (2007).
    [CrossRef]
  19. Y. Tsuboi, Y. Furuhata, and N. Kitamura, “A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto a poly(dimethylsiloxane) microchip,” Appl. Surf. Sci. 253, 8422-8427 (2007).
    [CrossRef]
  20. L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
    [CrossRef]
  21. D. Banks, C. Grivas, J. Mills, I. Zergioti, and R. Eason, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
    [CrossRef]
  22. S. Bera, A. Sabbah, J. Yarbrough, C. Allen, B. Winters, C. Durfee, and J. Squier, “Optimization study of the femtosecond laser-induced forward-transfer process with thin aluminium films,” Appl. Opt. 46, 4650-4659 (2007).
    [CrossRef] [PubMed]
  23. C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253, 8328-8333 (2007).
    [CrossRef]
  24. F. Claeyssens, A. Klini, A. Mourka, and C. Fotakis, “Laser patterning of zn for zno nanostructure growth: Comparison between laser induced forward transfer in air and in vacuum,” Thin Solid Films 515, 8529-8533 (2007).
    [CrossRef]
  25. I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247, 584-589 (2005).
  26. D. Banks, C. Grivas, I. Zergioti, and R. Eason, “Ballistic laser-assisted solid transfer (blast) from a thin film precursor,” Opt. Express 16, 3249-3254 (2008).
    [CrossRef] [PubMed]
  27. A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999).
    [CrossRef]
  28. W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411-421 (1993).
  29. P. Serra, M. Colina, J. Fernandez-Pradas, L. Sevilla, and J. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85, 1639-1641 (2004).
    [CrossRef]
  30. G. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82, 463-465(2003).
    [CrossRef]
  31. R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91, 061103(2007).
    [CrossRef]
  32. T. Smausz, B. Hopp, G. Kecskemeti, and Z. Bor, “Study on metal microparticle content of the material transferred with absorbing film assisted laser induced forward transfer when using silver absorbing layer,” Appl. Surf. Sci. 252, 4738-4742(2006).
    [CrossRef]
  33. R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer: influence of the material properties,” Appl. Surf. Sci. 254, 1322-1326(2007).
    [CrossRef]
  34. N. Kattamis, P. Purnick, R. Weiss, and C. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91, 171120 (2007).
    [CrossRef]
  35. D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83, 38003 (2008).
    [CrossRef]
  36. M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nuesch, and D. Rentsch, “Aryltriazene photopolymers for uv-laser applications: Improved synthesis and photodecomposition study,” Macromol. Chem. Phys. 208, 277-286 (2007).
    [CrossRef]
  37. F. Dill, “Optical lithography,” IEEE Trans. Electron Devices ED-22, 440-444 (1975).
    [CrossRef]
  38. C. Mack, “Analytical expression for the standing wave intensity in photoresist,” Appl. Opt. 25, 1958-1961 (1986).
    [CrossRef] [PubMed]
  39. J. Bonse, J. Solis, L. Urech, T. Lippert, and A. Wokaun, “Femtosecond and nanosecond laser damage thresholds of doped and undoped triazenepolymer thin films,” Appl. Surf. Sci. 253, 7787-7791 (2007).
    [CrossRef]

2008 (2)

D. Banks, C. Grivas, I. Zergioti, and R. Eason, “Ballistic laser-assisted solid transfer (blast) from a thin film precursor,” Opt. Express 16, 3249-3254 (2008).
[CrossRef] [PubMed]

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83, 38003 (2008).
[CrossRef]

2007 (10)

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nuesch, and D. Rentsch, “Aryltriazene photopolymers for uv-laser applications: Improved synthesis and photodecomposition study,” Macromol. Chem. Phys. 208, 277-286 (2007).
[CrossRef]

J. Bonse, J. Solis, L. Urech, T. Lippert, and A. Wokaun, “Femtosecond and nanosecond laser damage thresholds of doped and undoped triazenepolymer thin films,” Appl. Surf. Sci. 253, 7787-7791 (2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91, 061103(2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer: influence of the material properties,” Appl. Surf. Sci. 254, 1322-1326(2007).
[CrossRef]

N. Kattamis, P. Purnick, R. Weiss, and C. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91, 171120 (2007).
[CrossRef]

B. Thomas, A. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254, 1206-1210 (2007).
[CrossRef]

Y. Tsuboi, Y. Furuhata, and N. Kitamura, “A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto a poly(dimethylsiloxane) microchip,” Appl. Surf. Sci. 253, 8422-8427 (2007).
[CrossRef]

S. Bera, A. Sabbah, J. Yarbrough, C. Allen, B. Winters, C. Durfee, and J. Squier, “Optimization study of the femtosecond laser-induced forward-transfer process with thin aluminium films,” Appl. Opt. 46, 4650-4659 (2007).
[CrossRef] [PubMed]

C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253, 8328-8333 (2007).
[CrossRef]

F. Claeyssens, A. Klini, A. Mourka, and C. Fotakis, “Laser patterning of zn for zno nanostructure growth: Comparison between laser induced forward transfer in air and in vacuum,” Thin Solid Films 515, 8529-8533 (2007).
[CrossRef]

2006 (4)

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

D. Banks, C. Grivas, J. Mills, I. Zergioti, and R. Eason, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

T. Smausz, B. Hopp, G. Kecskemeti, and Z. Bor, “Study on metal microparticle content of the material transferred with absorbing film assisted laser induced forward transfer when using silver absorbing layer,” Appl. Surf. Sci. 252, 4738-4742(2006).
[CrossRef]

S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology 17, 1184-1187(2006).
[CrossRef]

2005 (3)

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247, 584-589 (2005).

D. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86, 244103 (2005).
[CrossRef]

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of tio-au nanocomposite films for maskless patterning,” Appl. Phys. Lett. 86, 114104 (2005).
[CrossRef]

2004 (2)

L. Landstrom, J. Klimstein, G. Schrems, K. Piglmayer, and D. Bauerle, “Single-step patterning and the fabrication of contact masks by laser-induced forward transfer,” Appl. Phys. A 78, 537-548 (2004).
[CrossRef]

P. Serra, M. Colina, J. Fernandez-Pradas, L. Sevilla, and J. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85, 1639-1641 (2004).
[CrossRef]

2003 (3)

G. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82, 463-465(2003).
[CrossRef]

B. Tan, K. Venkatakrishnan, and K. Tok, “Selective surface texturing using femtosecond pulsed laser induced forward transfer,” Appl. Surf. Sci. 207, 365-371 (2003).
[CrossRef]

I. Zergioti, D. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of cr,” Appl. Surf. Sci. 208-209, 177-180 (2003).
[CrossRef]

2000 (1)

R. Bahnisch, W. Gross, and A. Menschig, “Single-shot, high repetition rate metallic pattern transfer,” Microelectron. Eng. 50, 541-546 (2000).
[CrossRef]

1999 (2)

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A 69, S275-S278 (1999).
[CrossRef]

A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999).
[CrossRef]

1998 (1)

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579-582 (1998).
[CrossRef]

1995 (2)

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci. 86, 208-212 (1995).
[CrossRef]

H. Esrom, J. Zhang, U. Kogelschatz, and A. Pedraza, “New approach of a laser-induced forward transfer for deposition of patterned thin metal films,” Appl. Surf. Sci. 86, 202-207(1995).
[CrossRef]

1993 (1)

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411-421 (1993).

1992 (1)

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol. 36, 180-187 (1992).

1990 (2)

R. Baseman and N. Froberg, “Minimum fluence for laser blow-off of thin gold films at 248 and 532 nm,” Appl. Phys. Lett. 56, 1412-1414 (1990).
[CrossRef]

Z. Toth, Z. Kantor, P. Mogyorosi, and T. Szorenyi, “Surface patterning by pulsed laser induced transfer of metals and compounds,” Proc. SPIE 1279, 150-157 (1990).
[CrossRef]

1989 (1)

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high- Tc ybacuo and bisrcacuo superconducting thin films,” J. Appl. Phys. 66, 457-459 (1989).
[CrossRef]

1987 (1)

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5, 1490-1494 (1987).
[CrossRef]

1986 (2)

J. Bohandy, B. Kim, and F. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538-1539 (1986).
[CrossRef]

C. Mack, “Analytical expression for the standing wave intensity in photoresist,” Appl. Opt. 25, 1958-1961 (1986).
[CrossRef] [PubMed]

1975 (1)

F. Dill, “Optical lithography,” IEEE Trans. Electron Devices ED-22, 440-444 (1975).
[CrossRef]

Adrian, F.

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5, 1490-1494 (1987).
[CrossRef]

J. Bohandy, B. Kim, and F. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538-1539 (1986).
[CrossRef]

Allen, C.

Alloncle, A.

B. Thomas, A. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254, 1206-1210 (2007).
[CrossRef]

Arnold, C.

N. Kattamis, P. Purnick, R. Weiss, and C. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91, 171120 (2007).
[CrossRef]

Arnold, D.

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol. 36, 180-187 (1992).

Auyeung, R.

A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999).
[CrossRef]

Bahnisch, R.

R. Bahnisch, W. Gross, and A. Menschig, “Single-shot, high repetition rate metallic pattern transfer,” Microelectron. Eng. 50, 541-546 (2000).
[CrossRef]

Banks, D.

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83, 38003 (2008).
[CrossRef]

D. Banks, C. Grivas, I. Zergioti, and R. Eason, “Ballistic laser-assisted solid transfer (blast) from a thin film precursor,” Opt. Express 16, 3249-3254 (2008).
[CrossRef] [PubMed]

D. Banks, C. Grivas, J. Mills, I. Zergioti, and R. Eason, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

Barret, M.

B. Thomas, A. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254, 1206-1210 (2007).
[CrossRef]

Baseman, R.

R. Baseman and N. Froberg, “Minimum fluence for laser blow-off of thin gold films at 248 and 532 nm,” Appl. Phys. Lett. 56, 1412-1414 (1990).
[CrossRef]

Bauerle, D.

L. Landstrom, J. Klimstein, G. Schrems, K. Piglmayer, and D. Bauerle, “Single-step patterning and the fabrication of contact masks by laser-induced forward transfer,” Appl. Phys. A 78, 537-548 (2004).
[CrossRef]

Bera, S.

Blanchet, G.

G. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82, 463-465(2003).
[CrossRef]

Bohandy, J.

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5, 1490-1494 (1987).
[CrossRef]

J. Bohandy, B. Kim, and F. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538-1539 (1986).
[CrossRef]

Bonse, J.

J. Bonse, J. Solis, L. Urech, T. Lippert, and A. Wokaun, “Femtosecond and nanosecond laser damage thresholds of doped and undoped triazenepolymer thin films,” Appl. Surf. Sci. 253, 7787-7791 (2007).
[CrossRef]

Bor, Z.

T. Smausz, B. Hopp, G. Kecskemeti, and Z. Bor, “Study on metal microparticle content of the material transferred with absorbing film assisted laser induced forward transfer when using silver absorbing layer,” Appl. Surf. Sci. 252, 4738-4742(2006).
[CrossRef]

Chai, L.

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

Chakraborty, S.

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of tio-au nanocomposite films for maskless patterning,” Appl. Phys. Lett. 86, 114104 (2005).
[CrossRef]

Chakravorty, D.

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of tio-au nanocomposite films for maskless patterning,” Appl. Phys. Lett. 86, 114104 (2005).
[CrossRef]

Chang-Jian, S.

S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology 17, 1184-1187(2006).
[CrossRef]

Charron, L.

C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253, 8328-8333 (2007).
[CrossRef]

Cheng, J.

S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology 17, 1184-1187(2006).
[CrossRef]

Chrisey, D.

A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999).
[CrossRef]

Claeyssens, F.

F. Claeyssens, A. Klini, A. Mourka, and C. Fotakis, “Laser patterning of zn for zno nanostructure growth: Comparison between laser induced forward transfer in air and in vacuum,” Thin Solid Films 515, 8529-8533 (2007).
[CrossRef]

Colina, M.

P. Serra, M. Colina, J. Fernandez-Pradas, L. Sevilla, and J. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85, 1639-1641 (2004).
[CrossRef]

Collot, P.

B. Thomas, A. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254, 1206-1210 (2007).
[CrossRef]

Delaporte, P.

B. Thomas, A. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254, 1206-1210 (2007).
[CrossRef]

Dill, F.

F. Dill, “Optical lithography,” IEEE Trans. Electron Devices ED-22, 440-444 (1975).
[CrossRef]

Dlott, D.

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411-421 (1993).

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol. 36, 180-187 (1992).

Doxtader, M.

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411-421 (1993).

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol. 36, 180-187 (1992).

Duignan, M.

A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999).
[CrossRef]

Durfee, C.

Eason, R.

D. Banks, C. Grivas, I. Zergioti, and R. Eason, “Ballistic laser-assisted solid transfer (blast) from a thin film precursor,” Opt. Express 16, 3249-3254 (2008).
[CrossRef] [PubMed]

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83, 38003 (2008).
[CrossRef]

D. Banks, C. Grivas, J. Mills, I. Zergioti, and R. Eason, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

Ellis, E.

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411-421 (1993).

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol. 36, 180-187 (1992).

Esrom, H.

H. Esrom, J. Zhang, U. Kogelschatz, and A. Pedraza, “New approach of a laser-induced forward transfer for deposition of patterned thin metal films,” Appl. Surf. Sci. 86, 202-207(1995).
[CrossRef]

Fardel, R.

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83, 38003 (2008).
[CrossRef]

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer: influence of the material properties,” Appl. Surf. Sci. 254, 1322-1326(2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91, 061103(2007).
[CrossRef]

Fernandez-Pradas, J.

P. Serra, M. Colina, J. Fernandez-Pradas, L. Sevilla, and J. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85, 1639-1641 (2004).
[CrossRef]

Fincher, C.

G. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82, 463-465(2003).
[CrossRef]

Fitz-Gerald, J.

A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999).
[CrossRef]

Fogarassy, E.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high- Tc ybacuo and bisrcacuo superconducting thin films,” J. Appl. Phys. 66, 457-459 (1989).
[CrossRef]

Foley, D.

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol. 36, 180-187 (1992).

Fotakis, C.

F. Claeyssens, A. Klini, A. Mourka, and C. Fotakis, “Laser patterning of zn for zno nanostructure growth: Comparison between laser induced forward transfer in air and in vacuum,” Thin Solid Films 515, 8529-8533 (2007).
[CrossRef]

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247, 584-589 (2005).

I. Zergioti, D. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of cr,” Appl. Surf. Sci. 208-209, 177-180 (2003).
[CrossRef]

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579-582 (1998).
[CrossRef]

Froberg, N.

R. Baseman and N. Froberg, “Minimum fluence for laser blow-off of thin gold films at 248 and 532 nm,” Appl. Phys. Lett. 56, 1412-1414 (1990).
[CrossRef]

Fuchs, C.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high- Tc ybacuo and bisrcacuo superconducting thin films,” J. Appl. Phys. 66, 457-459 (1989).
[CrossRef]

Furuhata, Y.

Y. Tsuboi, Y. Furuhata, and N. Kitamura, “A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto a poly(dimethylsiloxane) microchip,” Appl. Surf. Sci. 253, 8422-8427 (2007).
[CrossRef]

Gamaly, E.

I. Zergioti, D. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of cr,” Appl. Surf. Sci. 208-209, 177-180 (2003).
[CrossRef]

Gao, F.

G. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82, 463-465(2003).
[CrossRef]

Gazia, R.

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83, 38003 (2008).
[CrossRef]

Germain, C.

C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253, 8328-8333 (2007).
[CrossRef]

Grigoropoulos, C.

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579-582 (1998).
[CrossRef]

Grivas, C.

D. Banks, C. Grivas, I. Zergioti, and R. Eason, “Ballistic laser-assisted solid transfer (blast) from a thin film precursor,” Opt. Express 16, 3249-3254 (2008).
[CrossRef] [PubMed]

D. Banks, C. Grivas, J. Mills, I. Zergioti, and R. Eason, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

Gross, W.

R. Bahnisch, W. Gross, and A. Menschig, “Single-shot, high repetition rate metallic pattern transfer,” Microelectron. Eng. 50, 541-546 (2000).
[CrossRef]

Grosu, V.

D. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86, 244103 (2005).
[CrossRef]

Hany, R.

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nuesch, and D. Rentsch, “Aryltriazene photopolymers for uv-laser applications: Improved synthesis and photodecomposition study,” Macromol. Chem. Phys. 208, 277-286 (2007).
[CrossRef]

Hauchecorne, G.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high- Tc ybacuo and bisrcacuo superconducting thin films,” J. Appl. Phys. 66, 457-459 (1989).
[CrossRef]

Ho, J.

S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology 17, 1184-1187(2006).
[CrossRef]

Hopp, B.

T. Smausz, B. Hopp, G. Kecskemeti, and Z. Bor, “Study on metal microparticle content of the material transferred with absorbing film assisted laser induced forward transfer when using silver absorbing layer,” Appl. Surf. Sci. 252, 4738-4742(2006).
[CrossRef]

Jette, A.

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5, 1490-1494 (1987).
[CrossRef]

Jia, W.

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

Kafetzopoulos, D.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247, 584-589 (2005).

Kalpouzos, C.

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579-582 (1998).
[CrossRef]

Kantor, Z.

Z. Toth, Z. Kantor, P. Mogyorosi, and T. Szorenyi, “Surface patterning by pulsed laser induced transfer of metals and compounds,” Proc. SPIE 1279, 150-157 (1990).
[CrossRef]

Kapsetaki, M.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247, 584-589 (2005).

Karaiskou, A.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247, 584-589 (2005).

I. Zergioti, D. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of cr,” Appl. Surf. Sci. 208-209, 177-180 (2003).
[CrossRef]

Kattamis, N.

N. Kattamis, P. Purnick, R. Weiss, and C. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91, 171120 (2007).
[CrossRef]

Kaur, K.

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83, 38003 (2008).
[CrossRef]

Kecskemeti, G.

T. Smausz, B. Hopp, G. Kecskemeti, and Z. Bor, “Study on metal microparticle content of the material transferred with absorbing film assisted laser induced forward transfer when using silver absorbing layer,” Appl. Surf. Sci. 252, 4738-4742(2006).
[CrossRef]

Kerherve, F.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high- Tc ybacuo and bisrcacuo superconducting thin films,” J. Appl. Phys. 66, 457-459 (1989).
[CrossRef]

Kim, B.

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5, 1490-1494 (1987).
[CrossRef]

J. Bohandy, B. Kim, and F. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538-1539 (1986).
[CrossRef]

Kitamura, N.

Y. Tsuboi, Y. Furuhata, and N. Kitamura, “A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto a poly(dimethylsiloxane) microchip,” Appl. Surf. Sci. 253, 8422-8427 (2007).
[CrossRef]

Klimstein, J.

L. Landstrom, J. Klimstein, G. Schrems, K. Piglmayer, and D. Bauerle, “Single-step patterning and the fabrication of contact masks by laser-induced forward transfer,” Appl. Phys. A 78, 537-548 (2004).
[CrossRef]

Klini, A.

F. Claeyssens, A. Klini, A. Mourka, and C. Fotakis, “Laser patterning of zn for zno nanostructure growth: Comparison between laser induced forward transfer in air and in vacuum,” Thin Solid Films 515, 8529-8533 (2007).
[CrossRef]

Kogelschatz, U.

H. Esrom, J. Zhang, U. Kogelschatz, and A. Pedraza, “New approach of a laser-induced forward transfer for deposition of patterned thin metal films,” Appl. Surf. Sci. 86, 202-207(1995).
[CrossRef]

Konov, V.

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci. 86, 208-212 (1995).
[CrossRef]

Lakeou, S.

A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999).
[CrossRef]

Landstrom, L.

L. Landstrom, J. Klimstein, G. Schrems, K. Piglmayer, and D. Bauerle, “Single-step patterning and the fabrication of contact masks by laser-induced forward transfer,” Appl. Phys. A 78, 537-548 (2004).
[CrossRef]

Lee, I.

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411-421 (1993).

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol. 36, 180-187 (1992).

Lilge, L.

C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253, 8328-8333 (2007).
[CrossRef]

Lippert, T.

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83, 38003 (2008).
[CrossRef]

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nuesch, and D. Rentsch, “Aryltriazene photopolymers for uv-laser applications: Improved synthesis and photodecomposition study,” Macromol. Chem. Phys. 208, 277-286 (2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer: influence of the material properties,” Appl. Surf. Sci. 254, 1322-1326(2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91, 061103(2007).
[CrossRef]

J. Bonse, J. Solis, L. Urech, T. Lippert, and A. Wokaun, “Femtosecond and nanosecond laser damage thresholds of doped and undoped triazenepolymer thin films,” Appl. Surf. Sci. 253, 7787-7791 (2007).
[CrossRef]

Loo, Y.-L.

G. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82, 463-465(2003).
[CrossRef]

Mack, C.

Mailis, S.

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579-582 (1998).
[CrossRef]

McGill, R.

A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999).
[CrossRef]

Menschig, A.

R. Bahnisch, W. Gross, and A. Menschig, “Single-shot, high repetition rate metallic pattern transfer,” Microelectron. Eng. 50, 541-546 (2000).
[CrossRef]

Mills, J.

D. Banks, C. Grivas, J. Mills, I. Zergioti, and R. Eason, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

Mogyorosi, P.

Z. Toth, Z. Kantor, P. Mogyorosi, and T. Szorenyi, “Surface patterning by pulsed laser induced transfer of metals and compounds,” Proc. SPIE 1279, 150-157 (1990).
[CrossRef]

Molberg, M.

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nuesch, and D. Rentsch, “Aryltriazene photopolymers for uv-laser applications: Improved synthesis and photodecomposition study,” Macromol. Chem. Phys. 208, 277-286 (2007).
[CrossRef]

Morenza, J.

P. Serra, M. Colina, J. Fernandez-Pradas, L. Sevilla, and J. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85, 1639-1641 (2004).
[CrossRef]

Mourka, A.

F. Claeyssens, A. Klini, A. Mourka, and C. Fotakis, “Laser patterning of zn for zno nanostructure growth: Comparison between laser induced forward transfer in air and in vacuum,” Thin Solid Films 515, 8529-8533 (2007).
[CrossRef]

Nagel, M.

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83, 38003 (2008).
[CrossRef]

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nuesch, and D. Rentsch, “Aryltriazene photopolymers for uv-laser applications: Improved synthesis and photodecomposition study,” Macromol. Chem. Phys. 208, 277-286 (2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91, 061103(2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer: influence of the material properties,” Appl. Surf. Sci. 254, 1322-1326(2007).
[CrossRef]

Nakata, Y.

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A 69, S275-S278 (1999).
[CrossRef]

Nguyen, V.

A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999).
[CrossRef]

Ni, X.

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

Nuesch, F.

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer: influence of the material properties,” Appl. Surf. Sci. 254, 1322-1326(2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91, 061103(2007).
[CrossRef]

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nuesch, and D. Rentsch, “Aryltriazene photopolymers for uv-laser applications: Improved synthesis and photodecomposition study,” Macromol. Chem. Phys. 208, 277-286 (2007).
[CrossRef]

Okada, T.

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A 69, S275-S278 (1999).
[CrossRef]

Papakonstantinou, P.

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579-582 (1998).
[CrossRef]

Papazoglou, D.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247, 584-589 (2005).

I. Zergioti, D. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of cr,” Appl. Surf. Sci. 208-209, 177-180 (2003).
[CrossRef]

Pedraza, A.

H. Esrom, J. Zhang, U. Kogelschatz, and A. Pedraza, “New approach of a laser-induced forward transfer for deposition of patterned thin metal films,” Appl. Surf. Sci. 86, 202-207(1995).
[CrossRef]

Perriere, J.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high- Tc ybacuo and bisrcacuo superconducting thin films,” J. Appl. Phys. 66, 457-459 (1989).
[CrossRef]

Piglmayer, K.

L. Landstrom, J. Klimstein, G. Schrems, K. Piglmayer, and D. Bauerle, “Single-step patterning and the fabrication of contact masks by laser-induced forward transfer,” Appl. Phys. A 78, 537-548 (2004).
[CrossRef]

Pimenov, S.

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci. 86, 208-212 (1995).
[CrossRef]

Pique, A.

A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999).
[CrossRef]

Purnick, P.

N. Kattamis, P. Purnick, R. Weiss, and C. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91, 171120 (2007).
[CrossRef]

Rentsch, D.

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nuesch, and D. Rentsch, “Aryltriazene photopolymers for uv-laser applications: Improved synthesis and photodecomposition study,” Macromol. Chem. Phys. 208, 277-286 (2007).
[CrossRef]

Rode, A.

I. Zergioti, D. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of cr,” Appl. Surf. Sci. 208-209, 177-180 (2003).
[CrossRef]

Rogers, J.

G. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82, 463-465(2003).
[CrossRef]

Sabbah, A.

Sakata, H.

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of tio-au nanocomposite films for maskless patterning,” Appl. Phys. Lett. 86, 114104 (2005).
[CrossRef]

Sanaur, S.

B. Thomas, A. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254, 1206-1210 (2007).
[CrossRef]

Schrems, G.

L. Landstrom, J. Klimstein, G. Schrems, K. Piglmayer, and D. Bauerle, “Single-step patterning and the fabrication of contact masks by laser-induced forward transfer,” Appl. Phys. A 78, 537-548 (2004).
[CrossRef]

Sentis, M.

B. Thomas, A. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254, 1206-1210 (2007).
[CrossRef]

Serra, P.

P. Serra, M. Colina, J. Fernandez-Pradas, L. Sevilla, and J. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85, 1639-1641 (2004).
[CrossRef]

Sevilla, L.

P. Serra, M. Colina, J. Fernandez-Pradas, L. Sevilla, and J. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85, 1639-1641 (2004).
[CrossRef]

Shafeev, G.

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci. 86, 208-212 (1995).
[CrossRef]

Smausz, T.

T. Smausz, B. Hopp, G. Kecskemeti, and Z. Bor, “Study on metal microparticle content of the material transferred with absorbing film assisted laser induced forward transfer when using silver absorbing layer,” Appl. Surf. Sci. 252, 4738-4742(2006).
[CrossRef]

Smolin, A.

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci. 86, 208-212 (1995).
[CrossRef]

Solis, J.

J. Bonse, J. Solis, L. Urech, T. Lippert, and A. Wokaun, “Femtosecond and nanosecond laser damage thresholds of doped and undoped triazenepolymer thin films,” Appl. Surf. Sci. 253, 7787-7791 (2007).
[CrossRef]

Squier, J.

Sung, C.

S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology 17, 1184-1187(2006).
[CrossRef]

Szorenyi, T.

Z. Toth, Z. Kantor, P. Mogyorosi, and T. Szorenyi, “Surface patterning by pulsed laser induced transfer of metals and compounds,” Proc. SPIE 1279, 150-157 (1990).
[CrossRef]

Tan, B.

B. Tan, K. Venkatakrishnan, and K. Tok, “Selective surface texturing using femtosecond pulsed laser induced forward transfer,” Appl. Surf. Sci. 207, 365-371 (2003).
[CrossRef]

Thomas, B.

B. Thomas, A. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254, 1206-1210 (2007).
[CrossRef]

Thompson, P.

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5, 1490-1494 (1987).
[CrossRef]

Tok, K.

B. Tan, K. Venkatakrishnan, and K. Tok, “Selective surface texturing using femtosecond pulsed laser induced forward transfer,” Appl. Surf. Sci. 207, 365-371 (2003).
[CrossRef]

Tolbert, W.

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411-421 (1993).

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol. 36, 180-187 (1992).

Toth, Z.

Z. Toth, Z. Kantor, P. Mogyorosi, and T. Szorenyi, “Surface patterning by pulsed laser induced transfer of metals and compounds,” Proc. SPIE 1279, 150-157 (1990).
[CrossRef]

Tsuboi, Y.

Y. Tsuboi, Y. Furuhata, and N. Kitamura, “A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto a poly(dimethylsiloxane) microchip,” Appl. Surf. Sci. 253, 8422-8427 (2007).
[CrossRef]

Tsui, Y.

C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253, 8328-8333 (2007).
[CrossRef]

Urech, L.

J. Bonse, J. Solis, L. Urech, T. Lippert, and A. Wokaun, “Femtosecond and nanosecond laser damage thresholds of doped and undoped triazenepolymer thin films,” Appl. Surf. Sci. 253, 7787-7791 (2007).
[CrossRef]

Vainos, N.

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579-582 (1998).
[CrossRef]

Venkatakrishnan, K.

B. Tan, K. Venkatakrishnan, and K. Tok, “Selective surface texturing using femtosecond pulsed laser induced forward transfer,” Appl. Surf. Sci. 207, 365-371 (2003).
[CrossRef]

Vodolaga, B.

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci. 86, 208-212 (1995).
[CrossRef]

Wakaki, M.

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of tio-au nanocomposite films for maskless patterning,” Appl. Phys. Lett. 86, 114104 (2005).
[CrossRef]

Wang, C.

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

Wang, Z.

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

Weiss, R.

N. Kattamis, P. Purnick, R. Weiss, and C. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91, 171120 (2007).
[CrossRef]

Willis, D.

D. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86, 244103 (2005).
[CrossRef]

Winters, B.

Wokaun, A.

J. Bonse, J. Solis, L. Urech, T. Lippert, and A. Wokaun, “Femtosecond and nanosecond laser damage thresholds of doped and undoped triazenepolymer thin films,” Appl. Surf. Sci. 253, 7787-7791 (2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer: influence of the material properties,” Appl. Surf. Sci. 254, 1322-1326(2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91, 061103(2007).
[CrossRef]

Wu, H.

A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999).
[CrossRef]

Wu, P.

A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999).
[CrossRef]

Yang, L.

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

Yarbrough, J.

Yokoyama, E.

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of tio-au nanocomposite films for maskless patterning,” Appl. Phys. Lett. 86, 114104 (2005).
[CrossRef]

Zergioti, I.

D. Banks, C. Grivas, I. Zergioti, and R. Eason, “Ballistic laser-assisted solid transfer (blast) from a thin film precursor,” Opt. Express 16, 3249-3254 (2008).
[CrossRef] [PubMed]

D. Banks, C. Grivas, J. Mills, I. Zergioti, and R. Eason, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247, 584-589 (2005).

I. Zergioti, D. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of cr,” Appl. Surf. Sci. 208-209, 177-180 (2003).
[CrossRef]

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579-582 (1998).
[CrossRef]

Zhang, J.

H. Esrom, J. Zhang, U. Kogelschatz, and A. Pedraza, “New approach of a laser-induced forward transfer for deposition of patterned thin metal films,” Appl. Surf. Sci. 86, 202-207(1995).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999).
[CrossRef]

Appl. Phys. A (3)

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A 69, S275-S278 (1999).
[CrossRef]

L. Landstrom, J. Klimstein, G. Schrems, K. Piglmayer, and D. Bauerle, “Single-step patterning and the fabrication of contact masks by laser-induced forward transfer,” Appl. Phys. A 78, 537-548 (2004).
[CrossRef]

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579-582 (1998).
[CrossRef]

Appl. Phys. Lett. (9)

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of tio-au nanocomposite films for maskless patterning,” Appl. Phys. Lett. 86, 114104 (2005).
[CrossRef]

D. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86, 244103 (2005).
[CrossRef]

R. Baseman and N. Froberg, “Minimum fluence for laser blow-off of thin gold films at 248 and 532 nm,” Appl. Phys. Lett. 56, 1412-1414 (1990).
[CrossRef]

N. Kattamis, P. Purnick, R. Weiss, and C. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91, 171120 (2007).
[CrossRef]

P. Serra, M. Colina, J. Fernandez-Pradas, L. Sevilla, and J. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85, 1639-1641 (2004).
[CrossRef]

G. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82, 463-465(2003).
[CrossRef]

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91, 061103(2007).
[CrossRef]

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

D. Banks, C. Grivas, J. Mills, I. Zergioti, and R. Eason, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

Appl. Surf. Sci. (11)

B. Thomas, A. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254, 1206-1210 (2007).
[CrossRef]

Y. Tsuboi, Y. Furuhata, and N. Kitamura, “A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto a poly(dimethylsiloxane) microchip,” Appl. Surf. Sci. 253, 8422-8427 (2007).
[CrossRef]

C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253, 8328-8333 (2007).
[CrossRef]

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247, 584-589 (2005).

T. Smausz, B. Hopp, G. Kecskemeti, and Z. Bor, “Study on metal microparticle content of the material transferred with absorbing film assisted laser induced forward transfer when using silver absorbing layer,” Appl. Surf. Sci. 252, 4738-4742(2006).
[CrossRef]

R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer: influence of the material properties,” Appl. Surf. Sci. 254, 1322-1326(2007).
[CrossRef]

H. Esrom, J. Zhang, U. Kogelschatz, and A. Pedraza, “New approach of a laser-induced forward transfer for deposition of patterned thin metal films,” Appl. Surf. Sci. 86, 202-207(1995).
[CrossRef]

I. Zergioti, D. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of cr,” Appl. Surf. Sci. 208-209, 177-180 (2003).
[CrossRef]

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci. 86, 208-212 (1995).
[CrossRef]

B. Tan, K. Venkatakrishnan, and K. Tok, “Selective surface texturing using femtosecond pulsed laser induced forward transfer,” Appl. Surf. Sci. 207, 365-371 (2003).
[CrossRef]

J. Bonse, J. Solis, L. Urech, T. Lippert, and A. Wokaun, “Femtosecond and nanosecond laser damage thresholds of doped and undoped triazenepolymer thin films,” Appl. Surf. Sci. 253, 7787-7791 (2007).
[CrossRef]

Europhys. Lett. (1)

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83, 38003 (2008).
[CrossRef]

IEEE Trans. Electron Devices (1)

F. Dill, “Optical lithography,” IEEE Trans. Electron Devices ED-22, 440-444 (1975).
[CrossRef]

J. Appl. Phys. (2)

J. Bohandy, B. Kim, and F. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538-1539 (1986).
[CrossRef]

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high- Tc ybacuo and bisrcacuo superconducting thin films,” J. Appl. Phys. 66, 457-459 (1989).
[CrossRef]

J. Imaging Sci. Technol. (2)

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol. 36, 180-187 (1992).

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411-421 (1993).

J. Vac. Sci. Technol. B (1)

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5, 1490-1494 (1987).
[CrossRef]

Macromol. Chem. Phys. (1)

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nuesch, and D. Rentsch, “Aryltriazene photopolymers for uv-laser applications: Improved synthesis and photodecomposition study,” Macromol. Chem. Phys. 208, 277-286 (2007).
[CrossRef]

Microelectron. Eng. (1)

R. Bahnisch, W. Gross, and A. Menschig, “Single-shot, high repetition rate metallic pattern transfer,” Microelectron. Eng. 50, 541-546 (2000).
[CrossRef]

Nanotechnology (1)

S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology 17, 1184-1187(2006).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

Z. Toth, Z. Kantor, P. Mogyorosi, and T. Szorenyi, “Surface patterning by pulsed laser induced transfer of metals and compounds,” Proc. SPIE 1279, 150-157 (1990).
[CrossRef]

Thin Solid Films (1)

F. Claeyssens, A. Klini, A. Mourka, and C. Fotakis, “Laser patterning of zn for zno nanostructure growth: Comparison between laser induced forward transfer in air and in vacuum,” Thin Solid Films 515, 8529-8533 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the LIFT technique.

Fig. 2
Fig. 2

Schematic of multiple reflections in a single transparent thin film under monochromatic, plane-wave illumination. Multiple reflections have been spatially separated for ease of viewing.

Fig. 3
Fig. 3

Fs-LIFT of a single film.

Fig. 4
Fig. 4

Variation of the maximum intensity in the donor with d air and d donor assuming r rec = 0.2 (a) and 0.57 (b).

Fig. 5
Fig. 5

Intensity (solid lines) and refractive index (dashed lines) profiles with ( d donor ( μm ) , d air ( μm ) ) equal to (0.05, 0.125) (a), (0.05, 0.375) (b), (0.5, 0.2) (c), and (0.5, 0.4) (d).

Fig. 6
Fig. 6

Plot of β as functions of d donor (a) and r rec (b) with other parameters fixed.

Fig. 7
Fig. 7

Plots of β in the TP-DRL (a) and in the GdGaO donor (b) as functions of d donor and d DRL with other parameters fixed, and variation of β in the DRL (diamonds) and donor (circles) layers as function of n DRL and n donor (c).

Fig. 8
Fig. 8

SEM micrographs of GdGaO deposits on Si as a function of d air transferred with fluence 90 mJ / cm 2 .

Fig. 9
Fig. 9

Main graph: variation of maximum fluence in TP-DRL (solid line) and GdGaO donor (dashed line) as functions of d air assuming incident fluence 90 mJ / cm 2 . SEM micrographs show deposited material at approximately indicated separations; scale bars represent 10 μm .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E a + ( z ) = E I n t 12 r 23 a - 1 r 21 a - 1 τ 2 2 ( a - 1 ) exp ( - i k 2 z ) ,
E a - ( z ) = E I n t 12 r 23 a r 21 a - 1 τ 2 2 a exp ( i k 2 z ) ,
E film ( z ) = a = 1 ( E a + ( z ) + E a - ( z ) ) .
E film ( z ) = E I n t 12 [ exp ( - i k 2 z 2 ) + r 23 τ 2 2 exp ( i k 2 z 2 ) ] S ,
E film ( z ) = E I n t 12 ( exp ( - i k 2 z ) + r 23 τ 2 2 exp ( i k 2 z ) 1 + r 12 r 23 τ 2 2 ) .
I film ( z ) = I film | E film ( z ) | 2 ,
E 2 ( z ) = E I n t 12 exp ( - i k 2 z ) + r 23 τ 2 2 exp ( i k 2 z ) 1 + r 12 r 23 τ 2 2 .
E j ( z ) = E I n , j t j - 1 , j exp ( - i k j z j ) + r j , j + 1 τ j 2 exp ( i k j z j ) 1 + r j - 1 , j * r j , j + 1 τ j 2 .
I 2 ( z ) = I 2 | E 2 ( z ) | 2 ,
I j ( z ) = I j | E j ( z ) | 2 ,
β = max ( I donor , Max ( d air ) ) min ( I donor , Max ( d air ) ) .

Metrics