Abstract

We report on fiber Bragg gratings (FBGs) inscribed in pure-silica and Ge-doped photonic crystal fibers (PCFs) with a two-beam interference technique and a femtosecond or excimer laser. Such a technique enables the inscription of FBGs for different Bragg wavelengths with high flexibility. Effects of H2- loading and Ge doping on the efficiency of grating inscription were investigated by measuring the development of Bragg wavelength and attenuation in the transmission spectra with an increased exposure dose. H2-loading dramatically enhances the laser-induced index modulation not only in Ge-doped PCFs but also in pure-silica PCFs. We observed a reversible Bragg wavelength shift during femtosecond pulse irradiation, which indicates an internal temperature rise of approximately 77°C.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460-1462 (1999).
    [CrossRef]
  2. Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282, 1129-1134 (2009).
    [CrossRef]
  3. Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
    [CrossRef]
  4. V. Beugin, L. Bigot, P. Niay, M. Lancry, Y. Quiquempois, M. Douay, G. Mélin, A. Fleureau, S. Lempereur, and L. Gasca, “Efficient Bragg gratings in phosphosilicate and germanosilicate photonic crystal fiber,” Appl. Opt. 45, 8186-8193 (2006).
    [CrossRef] [PubMed]
  5. L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638-640 (2005).
    [CrossRef]
  6. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, “Bragg gratings in air-silica structured fibers,” Opt. Lett. 28, 233-235 (2003).
    [CrossRef] [PubMed]
  7. G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349-350 (2003).
    [CrossRef]
  8. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16, 2784-2790 (2008).
    [CrossRef] [PubMed]
  9. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. M. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800 nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94-100 (2004).
    [CrossRef]
  10. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170-1172 (2004).
    [CrossRef]
  11. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29, 1730-1732 (2004).
    [CrossRef] [PubMed]
  12. C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29, 1458-1460 (2004).
    [CrossRef] [PubMed]
  13. K. Zagorulko, P. Kryukov, Y. Larionov, A. Rybaltovsky, E. Dianov, S. Chekalin, Y. Matveets, and V. Kompanets, “Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation,” Opt. Express 12, 5996-6001 (2004).
    [CrossRef] [PubMed]
  14. S. J. Mihailov, D. Grobnic, D. Huimin, C. W. Smelser, and B. Jes, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
    [CrossRef]
  15. M. Rothhardt, C. Chojetzki, and H. R. Mueller, “High mechanical strength single-pulse draw tower gratings,” Proc. SPIE 5579, 127-135 (2005).
    [CrossRef]
  16. M. Becker, J. Bergmann, S. Bruckner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express 16, 19169-19178 (2008).
    [CrossRef]
  17. Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16, 7258-7263 (2008).
    [CrossRef] [PubMed]
  18. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563-3574 (2007).
    [CrossRef]
  19. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

2009

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282, 1129-1134 (2009).
[CrossRef]

2008

2007

2006

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

S. J. Mihailov, D. Grobnic, D. Huimin, C. W. Smelser, and B. Jes, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

V. Beugin, L. Bigot, P. Niay, M. Lancry, Y. Quiquempois, M. Douay, G. Mélin, A. Fleureau, S. Lempereur, and L. Gasca, “Efficient Bragg gratings in phosphosilicate and germanosilicate photonic crystal fiber,” Appl. Opt. 45, 8186-8193 (2006).
[CrossRef] [PubMed]

2005

M. Rothhardt, C. Chojetzki, and H. R. Mueller, “High mechanical strength single-pulse draw tower gratings,” Proc. SPIE 5579, 127-135 (2005).
[CrossRef]

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638-640 (2005).
[CrossRef]

2004

2003

N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, “Bragg gratings in air-silica structured fibers,” Opt. Lett. 28, 233-235 (2003).
[CrossRef] [PubMed]

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349-350 (2003).
[CrossRef]

1999

Bartelt, H.

Becker, M.

Bennion, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170-1172 (2004).
[CrossRef]

Bergmann, J.

Beugin, V.

Bigot, L.

Bolger, J. A.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Bruckner, S.

Brueckner, S.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282, 1129-1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16, 7258-7263 (2008).
[CrossRef] [PubMed]

Buckley, E.

Canning, J.

Chekalin, S.

Chojetzki, C.

M. Rothhardt, C. Chojetzki, and H. R. Mueller, “High mechanical strength single-pulse draw tower gratings,” Proc. SPIE 5579, 127-135 (2005).
[CrossRef]

Dai, X.

Demokan, M. S.

Dianov, E.

Ding, H.

Ding, H. M.

Douay, M.

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170-1172 (2004).
[CrossRef]

Ecke, W.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282, 1129-1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16, 7258-7263 (2008).
[CrossRef] [PubMed]

Eggleton, B. J.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638-640 (2005).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

Fevrier, S.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Fleureau, A.

Franke, M.

Fu, L. B.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Gasca, L.

Grobnic, D.

Groothoff, N.

Ho, H. L.

Huimin, D.

S. J. Mihailov, D. Grobnic, D. Huimin, C. W. Smelser, and B. Jes, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

Humbert, G.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Jes, B.

S. J. Mihailov, D. Grobnic, D. Huimin, C. W. Smelser, and B. Jes, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

Jin, W.

Ju, J.

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Kautz, M.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282, 1129-1134 (2009).
[CrossRef]

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170-1172 (2004).
[CrossRef]

Kobelke, J.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282, 1129-1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16, 7258-7263 (2008).
[CrossRef] [PubMed]

Kompanets, V.

Kryukov, P.

Lancry, M.

Larionov, Y.

Lempereur, S.

Lindner, E.

Lu, P.

Lyttikainen, K.

Magi, E. C.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Malki, A.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Marshall, G. D.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170-1172 (2004).
[CrossRef]

Matveets, Y.

Mélin, G.

Mihailov, S. J.

Mörl, K.

Mueller, H. R.

M. Rothhardt, C. Chojetzki, and H. R. Mueller, “High mechanical strength single-pulse draw tower gratings,” Proc. SPIE 5579, 127-135 (2005).
[CrossRef]

Niay, P.

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Pagnoux, D.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Peng, G. D.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Quiquempois, Y.

Rao, Y. J.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Rothhardt, M.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282, 1129-1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16, 7258-7263 (2008).
[CrossRef] [PubMed]

M. Rothhardt, C. Chojetzki, and H. R. Mueller, “High mechanical strength single-pulse draw tower gratings,” Proc. SPIE 5579, 127-135 (2005).
[CrossRef]

Rothhardt, M. W.

Roy, P.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Rybaltovsky, A.

Smelser, C. W.

Spalter, S.

Steinvurzel, P.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Strasser, T. A.

Unruh, J.

Walker, R. B.

Wang, D.

Wang, D. N.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Wang, Y.

Wang, Y. P.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Westbrook, P. S.

Willsch, R.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282, 1129-1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16, 7258-7263 (2008).
[CrossRef] [PubMed]

Windeler, R. S.

Withford, M. J.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Xiao, L.

Xuan, H.

Zagari, J.

Zagorulko, K.

Zhao, C.-L.

Appl. Opt.

Appl. Phys. Lett.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Electron. Lett.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638-640 (2005).
[CrossRef]

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349-350 (2003).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170-1172 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

S. J. Mihailov, D. Grobnic, D. Huimin, C. W. Smelser, and B. Jes, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282, 1129-1134 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

M. Rothhardt, C. Chojetzki, and H. R. Mueller, “High mechanical strength single-pulse draw tower gratings,” Proc. SPIE 5579, 127-135 (2005).
[CrossRef]

Other

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of experimental setup for inscribing FBGs with two-beam interference and a femtosecond laser or an excimer laser.

Fig. 2
Fig. 2

(a) Cross sectional images of (a) pure-silica PCF (IPHT-84b1a) and (b) Ge-doped PCF (IPHT-282b5).

Fig. 3
Fig. 3

FBGs inscribed in pure-silica PCFs before and after H 2 -loading with a femtosecond laser: (a) development of Bragg wavelength and peak attenuation with increased exposure dose and (b) transmission and reflection spectra of the FBGs.

Fig. 4
Fig. 4

FBGs inscribed in Ge-doped PCFs before H 2 -loading with (a),(b) a femtosecond laser (FS pulse) and (c),(d) an excimer laser (NS pulse). (a) and (c) Development of Bragg wavelength and peak attenuation with increased exposure dose; (b) and (d) transmission and reflection spectra of the FBGs.

Fig. 5
Fig. 5

FBGs inscribed in Ge-doped PCFs after H 2 -loading with (a),(b) a femtosecond laser (FS pulse) and (c),(d) an excimer laser (NS pulse). (a) and (c) Development of Bragg wavelength and peak attenuation with increased exposure dose; (b) and (d) transmission and reflection spectra of the FBGs.

Fig. 6
Fig. 6

Index modulation with exposure dose in FBGs inscribed in pure-silica and Ge-doped PCFs before and after H 2 -loading with a femtosecond laser or an excimer laser. Insets in (a) and (b) are sectional magnifications of the nanosecond pulse exposure dose curve.

Tables (2)

Tables Icon

Table 1 Parameters of Pure-Silica and Ge-Doped PCFs

Tables Icon

Table 2 Parameters and Results of FBGs Inscribed in Pure-Silica or Ge-Doped PCFs Before and After H 2 -Loading

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ L 2 sin β ,
λ B = n eff · λ L sin β ,

Metrics