Abstract

The effective use of gold nanoshells as a contrast agent for optical coherence tomography (OCT) may be hampered by the delivery of a wrong dose to tissue that results in unwanted signal attenuation. In this study we examine how changes in μs due to concentration variations affect the OCT image and then define a dosing range that would result in appropriate scattering coefficient, μs, to maintain an acceptable signal attenuation level. Our results show that an increase in sample μs not only enhances the OCT signal near the surface but also attenuates the signal deeper into the sample. We synthesized gold nanoshells with an 81nm radius silica core and 23nm shell thickness and found that a concentration range of 5.6×109<c<2.3×1010particles/ml provided adequate signal enhancement near the surface without severely compromising the imaging depth due to signal attenuation. We also demonstrate the extraction of μs from the OCT signal to estimate the gold nanoshells’ concentration in vivo and verified that the estimated concentration of 6.2×109particles/ml in a mouse tumor after intravenous delivery lies within this concentration range to effectively enhance the tumor image.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
    [PubMed]
  3. A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Snopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, and O. Streltzova, “in vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express 1, 432-440 (1997).
    [CrossRef] [PubMed]
  4. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “in vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  5. A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, and V. V. Tuchin, “The influence of glycerol on the transport of light in the skin,” Proc. SPIE 4623, 144-152 (2002).
    [CrossRef]
  6. R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointestinal tissue,” Lasers Surg. Med. 30, 201-208 (2002).
    [CrossRef] [PubMed]
  7. J. K. Barton, J. B. Hoying, and C. J. Sullivan, “Use of microbubbles as an optical coherence tomography contrast agent,” Acad. Radiol. 9, S52-S55 (2002).
    [CrossRef] [PubMed]
  8. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546-1548 (2003).
    [CrossRef] [PubMed]
  9. T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical coherence tomography with plasmon resonant nanorods of gold,” Opt. Lett. 32, 1438-1440 (2007).
    [CrossRef] [PubMed]
  10. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
    [CrossRef] [PubMed]
  11. C. H. Loo, A. Lin, L. Hirsch, M. H. Lee, J. K. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Tech. Cancer Res. Treat. 3, 33-40 (2004).
  12. C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett. 30, 1012-1014 (2005).
    [CrossRef] [PubMed]
  13. E. V. Zagaynova, M. V. Shirmanova, A. G. Orlova, I. V. Balalaeva, M. Yu. Kirillin, V. A. Kamensky, M. L. Bugrova , and M. A. Sirotkina , “Gold nanoshells for OCT imaging contrast: From model to in vivo study,” Proc. SPIE 6865, 68650K (2008).
    [CrossRef]
  14. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999).
    [CrossRef]
  15. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897-2899 (1999).
    [CrossRef]
  16. C. H. Loo, A. Lowery, N. J. Halas, J. L. West, and R. A. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709-711 (2005).
    [CrossRef] [PubMed]
  17. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Serchen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
    [CrossRef] [PubMed]
  18. J. K. Barton, N. J. Halas, J. L. West, and R. A. Drezek, “Nanoshells as an optical coherence tomography contrast agent,” Proc. SPIE 5316, 99-106 (2004).
    [CrossRef]
  19. A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11, 041121 (2006).
    [CrossRef] [PubMed]
  20. D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, J. Valnciunaite, J. Swartling, S. Andersson-Engels, and P. R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249-259(2004).
    [CrossRef] [PubMed]
  21. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42, 3027-3037 (2003).
    [CrossRef] [PubMed]
  22. J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo, “Synthesis of gold nanoshells based on the deposition-precipitation process,” Gold Bull. 41, 23-36 (2008).
    [CrossRef]
  23. J. C. Y. Kah, Division of Bioengineering, National University of Singapore, Singapore is preparing a manuscript to be called “Backscattering response of gold nanoshells as an appropriate optical contrast parameter in reflectance-based imaging applications.”
  24. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951).
    [CrossRef]
  25. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
    [CrossRef] [PubMed]
  26. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167-176 (2001).
    [CrossRef] [PubMed]
  27. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507-4514 (1991).
    [CrossRef] [PubMed]
  28. A. Oldenburg, M. Hansen, D. Zweifel, A. Wei, and S. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14, 6724-6738 (2006).
    [CrossRef] [PubMed]
  29. D. J. Faber, M. C. G. Aalders, and T. G. van Leeuwen, “Curve fitting for quantitative measurement of attenuation coefficients from OCT images,” Proc. SPIE 5690, 325-333 (2005).
    [CrossRef]
  30. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A 17, 484-490 (2000).
    [CrossRef]
  31. A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J Biomed. Opt. 10, 064035 (2005).
    [CrossRef]
  32. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9, 227-233 (2003).
    [CrossRef]
  33. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992-994 (2001).
    [CrossRef]
  34. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590-592 (1994).
    [CrossRef] [PubMed]
  35. D. Faber, F. van der Meer, M. Aalders, and T. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353-4365 (2004).
    [CrossRef] [PubMed]
  36. G. Zaccanti, S. D. Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023-4030 (2003).
    [CrossRef] [PubMed]
  37. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, and A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318-2324 (1989).
    [CrossRef] [PubMed]
  38. W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
    [CrossRef]
  39. R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
    [CrossRef]
  40. W. D. James, L. R. Hirsch, J. L. West, P. D. O'Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radiol. Nucl. Chem. 271, 455-459 (2007).
    [CrossRef]

2008

E. V. Zagaynova, M. V. Shirmanova, A. G. Orlova, I. V. Balalaeva, M. Yu. Kirillin, V. A. Kamensky, M. L. Bugrova , and M. A. Sirotkina , “Gold nanoshells for OCT imaging contrast: From model to in vivo study,” Proc. SPIE 6865, 68650K (2008).
[CrossRef]

J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo, “Synthesis of gold nanoshells based on the deposition-precipitation process,” Gold Bull. 41, 23-36 (2008).
[CrossRef]

2007

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
[CrossRef]

W. D. James, L. R. Hirsch, J. L. West, P. D. O'Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radiol. Nucl. Chem. 271, 455-459 (2007).
[CrossRef]

T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical coherence tomography with plasmon resonant nanorods of gold,” Opt. Lett. 32, 1438-1440 (2007).
[CrossRef] [PubMed]

2006

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

A. Oldenburg, M. Hansen, D. Zweifel, A. Wei, and S. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14, 6724-6738 (2006).
[CrossRef] [PubMed]

2005

D. J. Faber, M. C. G. Aalders, and T. G. van Leeuwen, “Curve fitting for quantitative measurement of attenuation coefficients from OCT images,” Proc. SPIE 5690, 325-333 (2005).
[CrossRef]

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J Biomed. Opt. 10, 064035 (2005).
[CrossRef]

C. H. Loo, A. Lowery, N. J. Halas, J. L. West, and R. A. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett. 30, 1012-1014 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
[CrossRef] [PubMed]

2004

2003

G. Zaccanti, S. D. Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023-4030 (2003).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9, 227-233 (2003).
[CrossRef]

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42, 3027-3037 (2003).
[CrossRef] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Serchen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546-1548 (2003).
[CrossRef] [PubMed]

2002

A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, and V. V. Tuchin, “The influence of glycerol on the transport of light in the skin,” Proc. SPIE 4623, 144-152 (2002).
[CrossRef]

R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointestinal tissue,” Lasers Surg. Med. 30, 201-208 (2002).
[CrossRef] [PubMed]

J. K. Barton, J. B. Hoying, and C. J. Sullivan, “Use of microbubbles as an optical coherence tomography contrast agent,” Acad. Radiol. 9, S52-S55 (2002).
[CrossRef] [PubMed]

2001

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992-994 (2001).
[CrossRef]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167-176 (2001).
[CrossRef] [PubMed]

2000

1999

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999).
[CrossRef]

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897-2899 (1999).
[CrossRef]

1997

1996

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

1994

1992

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

1991

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507-4514 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1990

W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

1989

1951

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951).
[CrossRef]

Aalders, M.

Aalders, M. C.

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9, 227-233 (2003).
[CrossRef]

Aalders, M. C. G.

D. J. Faber, M. C. G. Aalders, and T. G. van Leeuwen, “Curve fitting for quantitative measurement of attenuation coefficients from OCT images,” Proc. SPIE 5690, 325-333 (2005).
[CrossRef]

Aden, A. L.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951).
[CrossRef]

Agrawal, A.

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Ahmad, I.

J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo, “Synthesis of gold nanoshells based on the deposition-precipitation process,” Gold Bull. 41, 23-36 (2008).
[CrossRef]

Andersen, C. B.

Andersen, P. E.

Andersson-Engels, S.

Andreola, S.

Au, L.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
[CrossRef] [PubMed]

Averitt, R. D.

Balalaeva, I. V.

E. V. Zagaynova, M. V. Shirmanova, A. G. Orlova, I. V. Balalaeva, M. Yu. Kirillin, V. A. Kamensky, M. L. Bugrova , and M. A. Sirotkina , “Gold nanoshells for OCT imaging contrast: From model to in vivo study,” Proc. SPIE 6865, 68650K (2008).
[CrossRef]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Serchen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

Barton, J. K.

T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical coherence tomography with plasmon resonant nanorods of gold,” Opt. Lett. 32, 1438-1440 (2007).
[CrossRef] [PubMed]

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

J. K. Barton, N. J. Halas, J. L. West, and R. A. Drezek, “Nanoshells as an optical coherence tomography contrast agent,” Proc. SPIE 5316, 99-106 (2004).
[CrossRef]

C. H. Loo, A. Lin, L. Hirsch, M. H. Lee, J. K. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Tech. Cancer Res. Treat. 3, 33-40 (2004).

J. K. Barton, J. B. Hoying, and C. J. Sullivan, “Use of microbubbles as an optical coherence tomography contrast agent,” Acad. Radiol. 9, S52-S55 (2002).
[CrossRef] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, and V. V. Tuchin, “The influence of glycerol on the transport of light in the skin,” Proc. SPIE 4623, 144-152 (2002).
[CrossRef]

Bertoni, A.

Bianco, S. D.

Boppart, S.

Boppart, S. A.

T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546-1548 (2003).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “in vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “in vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “in vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Bugrova, M. L.

E. V. Zagaynova, M. V. Shirmanova, A. G. Orlova, I. V. Balalaeva, M. Yu. Kirillin, V. A. Kamensky, M. L. Bugrova , and M. A. Sirotkina , “Gold nanoshells for OCT imaging contrast: From model to in vivo study,” Proc. SPIE 6865, 68650K (2008).
[CrossRef]

Cang, H.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
[CrossRef] [PubMed]

Chang, E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, J.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
[CrossRef] [PubMed]

Cheong, W.

W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Cho, S. H.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
[CrossRef]

Chumakov, Y.

Cobb, M. J.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
[CrossRef] [PubMed]

Denisenko, A.

Diagaradjane, P.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
[CrossRef]

Drezek, R.

Drezek, R. A.

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

C. H. Loo, A. Lowery, N. J. Halas, J. L. West, and R. A. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J Biomed. Opt. 10, 064035 (2005).
[CrossRef]

J. K. Barton, N. J. Halas, J. L. West, and R. A. Drezek, “Nanoshells as an optical coherence tomography contrast agent,” Proc. SPIE 5316, 99-106 (2004).
[CrossRef]

Elder, J. B.

R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointestinal tissue,” Lasers Surg. Med. 30, 201-208 (2002).
[CrossRef] [PubMed]

Esenaliev, R. O.

Faber, D.

Faber, D. J.

D. J. Faber, M. C. G. Aalders, and T. G. van Leeuwen, “Curve fitting for quantitative measurement of attenuation coefficients from OCT images,” Proc. SPIE 5690, 325-333 (2005).
[CrossRef]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9, 227-233 (2003).
[CrossRef]

Feldchtein, F.

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Frosz, M. H.

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “in vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590-592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gelikonov, G.

Gelikonov, V.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, and V. V. Tuchin, “The influence of glycerol on the transport of light in the skin,” Proc. SPIE 4623, 144-152 (2002).
[CrossRef]

Gill-Sharp, K. L.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
[CrossRef]

Gladkova, N.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Halas, N.

Halas, N. J.

C. H. Loo, A. Lowery, N. J. Halas, J. L. West, and R. A. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J Biomed. Opt. 10, 064035 (2005).
[CrossRef]

C. H. Loo, A. Lin, L. Hirsch, M. H. Lee, J. K. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Tech. Cancer Res. Treat. 3, 33-40 (2004).

J. K. Barton, N. J. Halas, J. L. West, and R. A. Drezek, “Nanoshells as an optical coherence tomography contrast agent,” Proc. SPIE 5316, 99-106 (2004).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Serchen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999).
[CrossRef]

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897-2899 (1999).
[CrossRef]

Hansen, M.

Hansen, P. R.

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Serchen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

Hee, M. R.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590-592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hirsch, L.

C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett. 30, 1012-1014 (2005).
[CrossRef] [PubMed]

C. H. Loo, A. Lin, L. Hirsch, M. H. Lee, J. K. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Tech. Cancer Res. Treat. 3, 33-40 (2004).

Hirsch, L. R.

W. D. James, L. R. Hirsch, J. L. West, P. D. O'Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radiol. Nucl. Chem. 271, 455-459 (2007).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Serchen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

Hoying, J. B.

J. K. Barton, J. B. Hoying, and C. J. Sullivan, “Use of microbubbles as an optical coherence tomography contrast agent,” Acad. Radiol. 9, S52-S55 (2002).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huang, S.

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Izatt, J. A.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590-592 (1994).
[CrossRef] [PubMed]

Jackson, J. B.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897-2899 (1999).
[CrossRef]

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

James, W. D.

W. D. James, L. R. Hirsch, J. L. West, P. D. O'Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radiol. Nucl. Chem. 271, 455-459 (2007).
[CrossRef]

Kah, J. C. Y.

J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo, “Synthesis of gold nanoshells based on the deposition-precipitation process,” Gold Bull. 41, 23-36 (2008).
[CrossRef]

J. C. Y. Kah, Division of Bioengineering, National University of Singapore, Singapore is preparing a manuscript to be called “Backscattering response of gold nanoshells as an appropriate optical contrast parameter in reflectance-based imaging applications.”

Kamensky, V. A.

E. V. Zagaynova, M. V. Shirmanova, A. G. Orlova, I. V. Balalaeva, M. Yu. Kirillin, V. A. Kamensky, M. L. Bugrova , and M. A. Sirotkina , “Gold nanoshells for OCT imaging contrast: From model to in vivo study,” Proc. SPIE 6865, 68650K (2008).
[CrossRef]

Kerker, M.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951).
[CrossRef]

Kholodnykh, A. I.

Kimmey, M. B.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
[CrossRef] [PubMed]

Kirillin, M. Yu.

E. V. Zagaynova, M. V. Shirmanova, A. G. Orlova, I. V. Balalaeva, M. Yu. Kirillin, V. A. Kamensky, M. L. Bugrova , and M. A. Sirotkina , “Gold nanoshells for OCT imaging contrast: From model to in vivo study,” Proc. SPIE 6865, 68650K (2008).
[CrossRef]

Krishnan, S.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
[CrossRef]

Kuranov, R.

Kuznetzova, I.

Larin, K. V.

Larina, I. V.

Lee, M. H.

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett. 30, 1012-1014 (2005).
[CrossRef] [PubMed]

C. H. Loo, A. Lin, L. Hirsch, M. H. Lee, J. K. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Tech. Cancer Res. Treat. 3, 33-40 (2004).

Lee, T. M.

Levitz, D.

Lewinski, N. A.

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J Biomed. Opt. 10, 064035 (2005).
[CrossRef]

Li, X.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
[CrossRef] [PubMed]

Li, Z. Y.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
[CrossRef] [PubMed]

Lin, A.

C. H. Loo, A. Lin, L. Hirsch, M. H. Lee, J. K. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Tech. Cancer Res. Treat. 3, 33-40 (2004).

Lin, A. W. H.

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J Biomed. Opt. 10, 064035 (2005).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Loo, C.

Loo, C. H.

C. H. Loo, A. Lowery, N. J. Halas, J. L. West, and R. A. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

C. H. Loo, A. Lin, L. Hirsch, M. H. Lee, J. K. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Tech. Cancer Res. Treat. 3, 33-40 (2004).

Lowery, A.

C. H. Loo, A. Lowery, N. J. Halas, J. L. West, and R. A. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

Luo, W.

Marchesini, R.

Marks, D. L.

Martelli, F.

Melloni, E.

Mhaisalkar, S.

J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo, “Synthesis of gold nanoshells based on the deposition-precipitation process,” Gold Bull. 41, 23-36 (2008).
[CrossRef]

Moes, C. J. M.

Motamedi, M.

Oldenburg, A.

Oldenburg, A. L.

Oldenburg, S. J.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897-2899 (1999).
[CrossRef]

Olivo, M.

J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo, “Synthesis of gold nanoshells based on the deposition-precipitation process,” Gold Bull. 41, 23-36 (2008).
[CrossRef]

O'Neal, P. D.

W. D. James, L. R. Hirsch, J. L. West, P. D. O'Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radiol. Nucl. Chem. 271, 455-459 (2007).
[CrossRef]

Orlova, A. G.

E. V. Zagaynova, M. V. Shirmanova, A. G. Orlova, I. V. Balalaeva, M. Yu. Kirillin, V. A. Kamensky, M. L. Bugrova , and M. A. Sirotkina , “Gold nanoshells for OCT imaging contrast: From model to in vivo study,” Proc. SPIE 6865, 68650K (2008).
[CrossRef]

Owen, G. M.

Payne, J. D.

W. D. James, L. R. Hirsch, J. L. West, P. D. O'Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radiol. Nucl. Chem. 271, 455-459 (2007).
[CrossRef]

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
[CrossRef]

Petrova, I. Y.

Pfefer, T. J.

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Phonthammachai, N.

J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo, “Synthesis of gold nanoshells based on the deposition-precipitation process,” Gold Bull. 41, 23-36 (2008).
[CrossRef]

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “in vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Pochinko, V.

Prahl, S. A.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507-4514 (1991).
[CrossRef] [PubMed]

W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Serchen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Rajaram, N.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
[CrossRef]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Serchen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

Romanowski, M.

Rylander, H. G.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
[CrossRef]

Saeki, F.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Schwartz, J.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
[CrossRef]

Serchen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Serchen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

Sergeev, A.

Shakhov, A.

Shakhova, N.

Sheppard, C.

J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo, “Synthesis of gold nanoshells based on the deposition-precipitation process,” Gold Bull. 41, 23-36 (2008).
[CrossRef]

Shirmanova, M. V.

E. V. Zagaynova, M. V. Shirmanova, A. G. Orlova, I. V. Balalaeva, M. Yu. Kirillin, V. A. Kamensky, M. L. Bugrova , and M. A. Sirotkina , “Gold nanoshells for OCT imaging contrast: From model to in vivo study,” Proc. SPIE 6865, 68650K (2008).
[CrossRef]

Sichirollo, A. E.

Sinichkin, Yu. P.

A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, and V. V. Tuchin, “The influence of glycerol on the transport of light in the skin,” Proc. SPIE 4623, 144-152 (2002).
[CrossRef]

Sirotkina, M. A.

E. V. Zagaynova, M. V. Shirmanova, A. G. Orlova, I. V. Balalaeva, M. Yu. Kirillin, V. A. Kamensky, M. L. Bugrova , and M. A. Sirotkina , “Gold nanoshells for OCT imaging contrast: From model to in vivo study,” Proc. SPIE 6865, 68650K (2008).
[CrossRef]

Sitafalwalla, S.

Snopova, L.

Song, J.

J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo, “Synthesis of gold nanoshells based on the deposition-precipitation process,” Gold Bull. 41, 23-36 (2008).
[CrossRef]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “in vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Serchen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Streltzova, O.

Sullivan, C. J.

J. K. Barton, J. B. Hoying, and C. J. Sullivan, “Use of microbubbles as an optical coherence tomography contrast agent,” Acad. Radiol. 9, S52-S55 (2002).
[CrossRef] [PubMed]

Suslick, K. S.

Swanson, E. A.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590-592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swartling, J.

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “in vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Thennadil, S. N.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167-176 (2001).
[CrossRef] [PubMed]

Thrane, L.

Toublan, F. J.

Troutman, T. S.

Troy, T. L.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167-176 (2001).
[CrossRef] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, and V. V. Tuchin, “The influence of glycerol on the transport of light in the skin,” Proc. SPIE 4623, 144-152 (2002).
[CrossRef]

Tunnell, J. W.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
[CrossRef]

Valnciunaite, J.

van der Meer, F.

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507-4514 (1991).
[CrossRef] [PubMed]

van Leeuwen, T.

van Leeuwen, T. G.

D. J. Faber, M. C. G. Aalders, and T. G. van Leeuwen, “Curve fitting for quantitative measurement of attenuation coefficients from OCT images,” Proc. SPIE 5690, 325-333 (2005).
[CrossRef]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9, 227-233 (2003).
[CrossRef]

van Marie, J.

van Staveren, H. J.

Wan, R. C. Y.

J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo, “Synthesis of gold nanoshells based on the deposition-precipitation process,” Gold Bull. 41, 23-36 (2008).
[CrossRef]

Wang, J. C.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
[CrossRef]

Wang, R. K.

R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointestinal tissue,” Lasers Surg. Med. 30, 201-208 (2002).
[CrossRef] [PubMed]

Wei, A.

Welch, A. J.

W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

West, J.

West, J. L.

W. D. James, L. R. Hirsch, J. L. West, P. D. O'Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radiol. Nucl. Chem. 271, 455-459 (2007).
[CrossRef]

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J Biomed. Opt. 10, 064035 (2005).
[CrossRef]

C. H. Loo, A. Lowery, N. J. Halas, J. L. West, and R. A. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

C. H. Loo, A. Lin, L. Hirsch, M. H. Lee, J. K. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Tech. Cancer Res. Treat. 3, 33-40 (2004).

J. K. Barton, N. J. Halas, J. L. West, and R. A. Drezek, “Nanoshells as an optical coherence tomography contrast agent,” Proc. SPIE 5316, 99-106 (2004).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Serchen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

Westcott, S. L.

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999).
[CrossRef]

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897-2899 (1999).
[CrossRef]

White, T.

J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo, “Synthesis of gold nanoshells based on the deposition-precipitation process,” Gold Bull. 41, 23-36 (2008).
[CrossRef]

Wiley, B. J.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
[CrossRef] [PubMed]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

Xia, Y.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
[CrossRef] [PubMed]

Yura, H. T.

Zaccanti, G.

Zagaynova, E. V.

E. V. Zagaynova, M. V. Shirmanova, A. G. Orlova, I. V. Balalaeva, M. Yu. Kirillin, V. A. Kamensky, M. L. Bugrova , and M. A. Sirotkina , “Gold nanoshells for OCT imaging contrast: From model to in vivo study,” Proc. SPIE 6865, 68650K (2008).
[CrossRef]

Zaman, R. T.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
[CrossRef]

Zhang, H.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
[CrossRef] [PubMed]

Zweifel, D.

Acad. Radiol.

J. K. Barton, J. B. Hoying, and C. J. Sullivan, “Use of microbubbles as an optical coherence tomography contrast agent,” Acad. Radiol. 9, S52-S55 (2002).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897-2899 (1999).
[CrossRef]

Circulation

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Gold Bull.

J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo, “Synthesis of gold nanoshells based on the deposition-precipitation process,” Gold Bull. 41, 23-36 (2008).
[CrossRef]

IEEE J. Quantum Electron.

W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007).
[CrossRef]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9, 227-233 (2003).
[CrossRef]

J Biomed. Opt.

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J Biomed. Opt. 10, 064035 (2005).
[CrossRef]

J. Appl. Phys.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951).
[CrossRef]

J. Biomed. Opt.

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167-176 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Radiol. Nucl. Chem.

W. D. James, L. R. Hirsch, J. L. West, P. D. O'Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radiol. Nucl. Chem. 271, 455-459 (2007).
[CrossRef]

Lasers Surg. Med.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointestinal tissue,” Lasers Surg. Med. 30, 201-208 (2002).
[CrossRef] [PubMed]

Nano Lett.

C. H. Loo, A. Lowery, N. J. Halas, J. L. West, and R. A. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Serchen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

Proc. SPIE

J. K. Barton, N. J. Halas, J. L. West, and R. A. Drezek, “Nanoshells as an optical coherence tomography contrast agent,” Proc. SPIE 5316, 99-106 (2004).
[CrossRef]

E. V. Zagaynova, M. V. Shirmanova, A. G. Orlova, I. V. Balalaeva, M. Yu. Kirillin, V. A. Kamensky, M. L. Bugrova , and M. A. Sirotkina , “Gold nanoshells for OCT imaging contrast: From model to in vivo study,” Proc. SPIE 6865, 68650K (2008).
[CrossRef]

A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, and V. V. Tuchin, “The influence of glycerol on the transport of light in the skin,” Proc. SPIE 4623, 144-152 (2002).
[CrossRef]

D. J. Faber, M. C. G. Aalders, and T. G. van Leeuwen, “Curve fitting for quantitative measurement of attenuation coefficients from OCT images,” Proc. SPIE 5690, 325-333 (2005).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “in vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Tech. Cancer Res. Treat.

C. H. Loo, A. Lin, L. Hirsch, M. H. Lee, J. K. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Tech. Cancer Res. Treat. 3, 33-40 (2004).

Other

J. C. Y. Kah, Division of Bioengineering, National University of Singapore, Singapore is preparing a manuscript to be called “Backscattering response of gold nanoshells as an appropriate optical contrast parameter in reflectance-based imaging applications.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Reaction schematic for the synthesis and pegylation of gold nanoshells with silica core of 81 nm radius and gold shell thickness of 23 nm used in this study.

Fig. 2
Fig. 2

Schematic of the spectral domain OCT imaging system used in this study. Image courtesy of Bioptigen Inc. The phantom and small animal imaging setup are shown as inset in the figure.

Fig. 3
Fig. 3

OCT imaging of phantom samples showing the changes (a) observed in OCT image with increasing μ s as given by an increasing Intralipid concentration and (b) in average A-scan profile corresponding to each of the above OCT images. The fitted curve based on the theoretical multiple scattering OCT model is shown as an overlay onto the measured signal to extract the sample μ s , which is indicated in the figure. The noise floor is shown by the dotted line. (c) Plot of the extracted μ s against different concentrations of Intralipid. The predicted linear relationship between μ s and concentration is shown as a dotted line as a reference to show the nonlinearity occurring at high concentrations of Intralipid.

Fig. 4
Fig. 4

(a) Electron micrograph of the nanoshell growth on an 81 nm radius dielectric silica nanoparticle core showing the initial gold hydroxide nanoparticles deposited on the silica and gradual growth and coalescence of these nanoparticles on the silica surface until a complete growth of 23 nm thick gold shell is obtained. (b) Measured UV–Vis extinction spectrum of the synthesized gold nanoshells (solid curve). The theoretically calculated extinction spectrum of gold nanoshells of the same dimension is shown for comparison (dotted curve), together with the contributions from the constituent scattering (dashed–dotted curve) and absorption (dashed–dotted–dotted curve) of gold shells derived from Mie theory.

Fig. 5
Fig. 5

OCT imaging of phantom samples showing the changes (a) observed in OCT image with increasing concentration of gold nanoshells in Intralipid and (b) in average A-scan profile corresponding to each of the OCT images above. The fitted curve based on the theoretical multiple scattering OCT model is shown as an overlay onto the measured signal to extract the sample μ s , which is indicated in the figure. The noise floor is shown as a dotted line. (c) Plot of the calculated μ s of gold nanoshells in Intralipid (solid line) derived from subtraction of μ s , ILP from the extracted μ s , GNS in ILP (dashed–dotted–dotted line) against different concentrations of gold nanoshells in Intralipid. The theoretical linear relationship between μ s and gold nanoshell concentration is shown as a dotted line.

Fig. 6
Fig. 6

(a) OCT imaging of small animal tumor before and after delivery of gold nanoshells via intravenous and intratumoral administration. The normal skin surrounding the tumor before and after the gold nanoshell delivery is also shown as a comparison. (b) Average A-scan profile of tumor (i) before and after (ii) intravenous and (iii) intratumoral delivery of gold nanoshells. The measured OCT signal is shown (dotted curve) with the theoretical OCT profile fitted (solid curve) using a nonlinear least squares fit. The coefficient of determination r and extracted μ s for each fit is indicated in the figure.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i ( z ) = A exp ( 2 μ s z ) + 2 exp ( μ s z ) [ 1 exp ( μ s z ) ] 1 + ( w S w H ) 2 + [ 1 exp ( μ s z ) ] 2 ( w S w H ) 2 , ( w s w h ) 2 = 1 + [ 2 w 0 ρ 0 ( z ) ] 2 , ρ 0 = 3 μ s z λ π θ r m s [ n f z ] ,
μ s , GNS = μ s , GNS in ILP - μ s , ILP .
μ s = ρ A Q sca ,
μ s = 1.556 ρ × 10 10 mm 1 ,

Metrics