Abstract

Second-harmonic-generation (SHG) microscopy is an interesting new tool for observing dermal collagen fiber in skin. However, conventional SHG microscopy using a mode-locked Ti:sapphire laser suffers from low penetration depth and a slow image acquisition rate caused by scattering and absorption in tissue, making it difficult to use for in vivo applications on human skin. We develop an SHG microscope equipped with a mode-locked Cr:forsterite laser with a long wavelength and compare its imaging characteristics with that of a Ti:sapphire-laser-based SHG microscope for the measurement of dermal collagen fiber in animal and human skins. The results indicate the suitability of the Cr:forsterite laser-based SHG microscope for in vivo imaging of human skin.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Roth and I. Freund, “Optical second-harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271-1290 (1981).
    [CrossRef] [PubMed]
  2. G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53-62 (2003).
    [CrossRef]
  3. K. König and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8, 432-439(2003).
    [CrossRef] [PubMed]
  4. J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “In vivo nonlinear spectral imaging in mouse skin,” Opt. Express 14, 4395-4402 (2006).
    [CrossRef] [PubMed]
  5. T. Yasui, Y. Tohno, and T. Araki, “Determination of collagen fiber orientation in human tissue by polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861-2867 (2004).
    [CrossRef] [PubMed]
  6. T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259-264 (2004).
    [CrossRef] [PubMed]
  7. T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light,” Opt. Quantum Electron. 37, 1397-1408 (2005).
    [CrossRef]
  8. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39, 1194-1201 (2000).
    [CrossRef]
  9. C.-Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8, 450-459 (2003).
    [CrossRef] [PubMed]
  10. U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88-97 (2001).
    [CrossRef]
  11. K. König, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two photon microscope,” Opt. Lett. 22, 135-136 (1997).
    [CrossRef] [PubMed]
  12. P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, “Highly efficient upconverters for multiphoton fluorescence microscopy,” J. Microsc. 189, 199-212 (1998).
    [CrossRef]
  13. R. R. Anderson and J. A. Parish, “The optics of human skin,” J. Invest. Dermatol. 77, 13-19 (1981).
    [CrossRef] [PubMed]
  14. S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093-3099 (2003).
    [CrossRef] [PubMed]
  15. S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, “In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy,” Opt. Express 14, 6178-6187 (2006).
    [CrossRef] [PubMed]
  16. S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13, 8231-8242 (2005).
    [CrossRef] [PubMed]
  17. S.-Y. Chen, C.-Y. S. Hsu, and C.-K. Sun, “Epi-third and second harmonic generation microscopic imaging of abnormal enamel,” Opt. Express 16, 11670-11679 (2008).
    [PubMed]
  18. I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: a microspectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron 34, 1251-1266 (2002).
    [CrossRef]
  19. T.-H. Tsai, S.-P. Tai, W.-J. Lee, H.-Y. Huang, Y.-H. Liao, and C.-K. Sun, “Optical signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy,” Opt. Express 14, 749-758 (2006).
    [CrossRef] [PubMed]
  20. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258-2260 (1995).
    [CrossRef] [PubMed]
  21. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
    [CrossRef] [PubMed]
  22. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123-1130 (2003).
    [CrossRef] [PubMed]
  23. Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, “Second-harmonic optical coherence tomography,” Opt. Lett. 29, 1090-1092(2004).
    [CrossRef] [PubMed]
  24. J. Su, I. V. Tomov, Y. Jiang, and Z. Chen, “High-resolution frequency-domain second-harmonic optical coherence tomography,” Appl. Opt. 46, 1770-1775 (2007).
    [CrossRef] [PubMed]
  25. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323-1325 (1997).
    [CrossRef]
  26. F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, and R. Wepf, “Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm,” J. Biomed. Opt. 13, 041320 (2008).
    [CrossRef] [PubMed]
  27. S.-Y. Chen and C.-K. Sun, “In vivo imaging of human skin using harmonic generation microscopy,” in Abstracts. Focus on Microscopy 2008 (2008), p. 59.
  28. L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, “Collagen loss in photoaged human skin is overestimated by histochemistry,” Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
    [CrossRef] [PubMed]
  29. S.-J. Lin, R.-Jr. Wu, H.-Y. Tan, W. Lo, W.-C. Lin, T.-H. Young, C.-J. Hsu, J.-S. Chen, S.-H. Jee, and C.-Y. Dong, “Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy,” Opt. Lett. 30, 2275-2277 (2005).
    [CrossRef] [PubMed]
  30. M. J. Koehler, K. König, P. Elsner, R. Bückle, and M. Kaatz, “In vivo assessment of human skin aging by multiphoton laser scanning tomography,” Opt. Lett. 31, 2879-2881(2006).
    [CrossRef] [PubMed]
  31. T. Yasui, Y. Takahashi, T. Araki, Y. Ogura, Y. Matsunaga, and T. Kuwahara, “Observation of photoaged, dermal collagen fiber using polarization-resolved second-harmonic-generation microscopy,” J. Invest. Dermatol. 128, S40 (2008).
  32. T. Yasui, Y. Takahashi, S. Fukushima, Y. Ogura, T. Yamashita, T. Kuwahara, T. Hirao, and T. Araki, “Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy,” Opt. Express 17, 912-923 (2009).
    [PubMed]

2008 (3)

S.-Y. Chen, C.-Y. S. Hsu, and C.-K. Sun, “Epi-third and second harmonic generation microscopic imaging of abnormal enamel,” Opt. Express 16, 11670-11679 (2008).
[PubMed]

F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, and R. Wepf, “Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm,” J. Biomed. Opt. 13, 041320 (2008).
[CrossRef] [PubMed]

T. Yasui, Y. Takahashi, T. Araki, Y. Ogura, Y. Matsunaga, and T. Kuwahara, “Observation of photoaged, dermal collagen fiber using polarization-resolved second-harmonic-generation microscopy,” J. Invest. Dermatol. 128, S40 (2008).

2007 (1)

2006 (4)

2005 (3)

2004 (3)

2003 (5)

G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53-62 (2003).
[CrossRef]

K. König and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8, 432-439(2003).
[CrossRef] [PubMed]

C.-Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8, 450-459 (2003).
[CrossRef] [PubMed]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093-3099 (2003).
[CrossRef] [PubMed]

P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123-1130 (2003).
[CrossRef] [PubMed]

2002 (2)

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: a microspectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron 34, 1251-1266 (2002).
[CrossRef]

2001 (1)

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88-97 (2001).
[CrossRef]

2000 (2)

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39, 1194-1201 (2000).
[CrossRef]

L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, “Collagen loss in photoaged human skin is overestimated by histochemistry,” Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
[CrossRef] [PubMed]

1998 (1)

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, “Highly efficient upconverters for multiphoton fluorescence microscopy,” J. Microsc. 189, 199-212 (1998).
[CrossRef]

1997 (2)

1995 (1)

1981 (2)

R. R. Anderson and J. A. Parish, “The optics of human skin,” J. Invest. Dermatol. 77, 13-19 (1981).
[CrossRef] [PubMed]

S. Roth and I. Freund, “Optical second-harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271-1290 (1981).
[CrossRef] [PubMed]

Albert, O.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

Alfano, R. R.

Anderson, R. R.

R. R. Anderson and J. A. Parish, “The optics of human skin,” J. Invest. Dermatol. 77, 13-19 (1981).
[CrossRef] [PubMed]

Araki, T.

T. Yasui, Y. Takahashi, T. Araki, Y. Ogura, Y. Matsunaga, and T. Kuwahara, “Observation of photoaged, dermal collagen fiber using polarization-resolved second-harmonic-generation microscopy,” J. Invest. Dermatol. 128, S40 (2008).

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light,” Opt. Quantum Electron. 37, 1397-1408 (2005).
[CrossRef]

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259-264 (2004).
[CrossRef] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, “Determination of collagen fiber orientation in human tissue by polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861-2867 (2004).
[CrossRef] [PubMed]

T. Yasui, Y. Takahashi, S. Fukushima, Y. Ogura, T. Yamashita, T. Kuwahara, T. Hirao, and T. Araki, “Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy,” Opt. Express 17, 912-923 (2009).
[PubMed]

Berns, M. W.

Bouma, B. E.

Breitbart, W.

F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, and R. Wepf, “Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm,” J. Biomed. Opt. 13, 041320 (2008).
[CrossRef] [PubMed]

Brezinski, M. E.

Bückle, R.

Burns, D.

Chen, I.-H.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: a microspectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron 34, 1251-1266 (2002).
[CrossRef]

Chen, J.-S.

Chen, S.-Y.

Chen, Z.

Cheng, P. C.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, “Highly efficient upconverters for multiphoton fluorescence microscopy,” J. Microsc. 189, 199-212 (1998).
[CrossRef]

Cheng, P.-C.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: a microspectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron 34, 1251-1266 (2002).
[CrossRef]

Chu, S.-W.

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093-3099 (2003).
[CrossRef] [PubMed]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: a microspectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron 34, 1251-1266 (2002).
[CrossRef]

Coleno, M.

Cox, G.

G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53-62 (2003).
[CrossRef]

de Bruijn, H. S.

Dong, C.-Y.

Dunn, A. K.

Elsner, P.

Fischer, F.

F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, and R. Wepf, “Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm,” J. Biomed. Opt. 13, 041320 (2008).
[CrossRef] [PubMed]

Fraser, I.

G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53-62 (2003).
[CrossRef]

Freund, I.

S. Roth and I. Freund, “Optical second-harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271-1290 (1981).
[CrossRef] [PubMed]

Fujimoto, J. G.

Fukushima, S.

Gerritsen, H. C.

Girkin, J.

Gorrell, M. D.

G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53-62 (2003).
[CrossRef]

Gratton, E.

Greinert, R.

F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, and R. Wepf, “Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm,” J. Biomed. Opt. 13, 041320 (2008).
[CrossRef] [PubMed]

Guo, Y.

Halbhuber, J. J.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88-97 (2001).
[CrossRef]

Harris, D.

Hee, M. R.

Hirao, T.

Ho, P. P.

Hsu, C.-J.

Hsu, C.-Y. S.

Huang, H.-Y.

Jee, S.-H.

Jiang, Y.

Jones, A.

G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53-62 (2003).
[CrossRef]

Kaatz, M.

Kable, E.

G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53-62 (2003).
[CrossRef]

Kiefer, J.

F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, and R. Wepf, “Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm,” J. Biomed. Opt. 13, 041320 (2008).
[CrossRef] [PubMed]

Kim, K.-S.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, “Highly efficient upconverters for multiphoton fluorescence microscopy,” J. Microsc. 189, 199-212 (1998).
[CrossRef]

Kligman, A. M.

L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, “Collagen loss in photoaged human skin is overestimated by histochemistry,” Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
[CrossRef] [PubMed]

Kligman, L. H.

L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, “Collagen loss in photoaged human skin is overestimated by histochemistry,” Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
[CrossRef] [PubMed]

Koehler, M. J.

Koenig, K.

C.-Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8, 450-459 (2003).
[CrossRef] [PubMed]

König, K.

M. J. Koehler, K. König, P. Elsner, R. Bückle, and M. Kaatz, “In vivo assessment of human skin aging by multiphoton laser scanning tomography,” Opt. Lett. 31, 2879-2881(2006).
[CrossRef] [PubMed]

K. König and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8, 432-439(2003).
[CrossRef] [PubMed]

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88-97 (2001).
[CrossRef]

K. König, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two photon microscope,” Opt. Lett. 22, 135-136 (1997).
[CrossRef] [PubMed]

Krieg, R.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88-97 (2001).
[CrossRef]

Kuwahara, T.

T. Yasui, Y. Takahashi, T. Araki, Y. Ogura, Y. Matsunaga, and T. Kuwahara, “Observation of photoaged, dermal collagen fiber using polarization-resolved second-harmonic-generation microscopy,” J. Invest. Dermatol. 128, S40 (2008).

T. Yasui, Y. Takahashi, S. Fukushima, Y. Ogura, T. Yamashita, T. Kuwahara, T. Hirao, and T. Araki, “Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy,” Opt. Express 17, 912-923 (2009).
[PubMed]

Lee, W.-J.

Liao, Y.-H.

Lin, B.-L.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: a microspectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron 34, 1251-1266 (2002).
[CrossRef]

Lin, C.-Y.

Lin, S.-J.

Lin, W.-C.

Liou, W. S.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, “Highly efficient upconverters for multiphoton fluorescence microscopy,” J. Microsc. 189, 199-212 (1998).
[CrossRef]

Liu, F.

Liu, H.-L.

Liu, T.-M.

Lo, W.

Manconi, F.

G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53-62 (2003).
[CrossRef]

Mantulin, W. W.

Marsh, P.

Matsunaga, Y.

T. Yasui, Y. Takahashi, T. Araki, Y. Ogura, Y. Matsunaga, and T. Kuwahara, “Observation of photoaged, dermal collagen fiber using polarization-resolved second-harmonic-generation microscopy,” J. Invest. Dermatol. 128, S40 (2008).

Norris, T. B.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

Ogura, Y.

T. Yasui, Y. Takahashi, T. Araki, Y. Ogura, Y. Matsunaga, and T. Kuwahara, “Observation of photoaged, dermal collagen fiber using polarization-resolved second-harmonic-generation microscopy,” J. Invest. Dermatol. 128, S40 (2008).

T. Yasui, Y. Takahashi, S. Fukushima, Y. Ogura, T. Yamashita, T. Kuwahara, T. Hirao, and T. Araki, “Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy,” Opt. Express 17, 912-923 (2009).
[PubMed]

Palero, J. A.

Pan, S. J.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, “Highly efficient upconverters for multiphoton fluorescence microscopy,” J. Microsc. 189, 199-212 (1998).
[CrossRef]

Parish, J. A.

R. R. Anderson and J. A. Parish, “The optics of human skin,” J. Invest. Dermatol. 77, 13-19 (1981).
[CrossRef] [PubMed]

Park, M. S.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, “Highly efficient upconverters for multiphoton fluorescence microscopy,” J. Microsc. 189, 199-212 (1998).
[CrossRef]

Peuckert, C.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88-97 (2001).
[CrossRef]

Puschmann, S.

F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, and R. Wepf, “Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm,” J. Biomed. Opt. 13, 041320 (2008).
[CrossRef] [PubMed]

Riemann, I.

K. König and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8, 432-439(2003).
[CrossRef] [PubMed]

Roth, S.

S. Roth and I. Freund, “Optical second-harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271-1290 (1981).
[CrossRef] [PubMed]

Sacks, P.

Sapadin, A. N.

L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, “Collagen loss in photoaged human skin is overestimated by histochemistry,” Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
[CrossRef] [PubMed]

Sasaki, K.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light,” Opt. Quantum Electron. 37, 1397-1408 (2005).
[CrossRef]

Savage, H.

Schantz, S.

Schwartz, E.

L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, “Collagen loss in photoaged human skin is overestimated by histochemistry,” Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
[CrossRef] [PubMed]

Sherman, L.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

Shieh, D.-B.

Shih, A.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, “Highly efficient upconverters for multiphoton fluorescence microscopy,” J. Microsc. 189, 199-212 (1998).
[CrossRef]

So, P.

C.-Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8, 450-459 (2003).
[CrossRef] [PubMed]

So, P. T. C.

Southern, J. F.

Sterenborg, H. J. C. M.

Su, J.

Sun, C.-K.

S.-Y. Chen, C.-Y. S. Hsu, and C.-K. Sun, “Epi-third and second harmonic generation microscopic imaging of abnormal enamel,” Opt. Express 16, 11670-11679 (2008).
[PubMed]

S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, “In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy,” Opt. Express 14, 6178-6187 (2006).
[CrossRef] [PubMed]

T.-H. Tsai, S.-P. Tai, W.-J. Lee, H.-Y. Huang, Y.-H. Liao, and C.-K. Sun, “Optical signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy,” Opt. Express 14, 749-758 (2006).
[CrossRef] [PubMed]

S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13, 8231-8242 (2005).
[CrossRef] [PubMed]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093-3099 (2003).
[CrossRef] [PubMed]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: a microspectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron 34, 1251-1266 (2002).
[CrossRef]

S.-Y. Chen and C.-K. Sun, “In vivo imaging of human skin using harmonic generation microscopy,” in Abstracts. Focus on Microscopy 2008 (2008), p. 59.

Tai, S.-P.

Takahashi, Y.

T. Yasui, Y. Takahashi, T. Araki, Y. Ogura, Y. Matsunaga, and T. Kuwahara, “Observation of photoaged, dermal collagen fiber using polarization-resolved second-harmonic-generation microscopy,” J. Invest. Dermatol. 128, S40 (2008).

T. Yasui, Y. Takahashi, S. Fukushima, Y. Ogura, T. Yamashita, T. Kuwahara, T. Hirao, and T. Araki, “Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy,” Opt. Express 17, 912-923 (2009).
[PubMed]

Tan, H.-Y.

Tearney, G. J.

Tirlapur, U. K.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88-97 (2001).
[CrossRef]

Tohno, Y.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light,” Opt. Quantum Electron. 37, 1397-1408 (2005).
[CrossRef]

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259-264 (2004).
[CrossRef] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, “Determination of collagen fiber orientation in human tissue by polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861-2867 (2004).
[CrossRef] [PubMed]

Tomov, I.

Tomov, I. V.

Tromberg, B. J.

Tsai, H.-J.

Tsai, T.-H.

van der Ploeg-van den Heuvel, A.

Volkmer, B.

F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, and R. Wepf, “Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm,” J. Biomed. Opt. 13, 041320 (2008).
[CrossRef] [PubMed]

Wallace, V. P.

Wang, Y.

Wepf, R.

F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, and R. Wepf, “Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm,” J. Biomed. Opt. 13, 041320 (2008).
[CrossRef] [PubMed]

Wu, P.-C.

Wu, R.-Jr.

Yamashita, T.

Yasui, T.

T. Yasui, Y. Takahashi, T. Araki, Y. Ogura, Y. Matsunaga, and T. Kuwahara, “Observation of photoaged, dermal collagen fiber using polarization-resolved second-harmonic-generation microscopy,” J. Invest. Dermatol. 128, S40 (2008).

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light,” Opt. Quantum Electron. 37, 1397-1408 (2005).
[CrossRef]

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259-264 (2004).
[CrossRef] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, “Determination of collagen fiber orientation in human tissue by polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861-2867 (2004).
[CrossRef] [PubMed]

T. Yasui, Y. Takahashi, S. Fukushima, Y. Ogura, T. Yamashita, T. Kuwahara, T. Hirao, and T. Araki, “Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy,” Opt. Express 17, 912-923 (2009).
[PubMed]

Ye, J. Y.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

Young, T.-H.

Yu, C.-H.

Zhadin, N.

Zhang, K.

Appl. Opt. (3)

Biopolymers (1)

S. Roth and I. Freund, “Optical second-harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271-1290 (1981).
[CrossRef] [PubMed]

Exp. Cell Research (1)

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88-97 (2001).
[CrossRef]

J. Biomed. Opt. (4)

K. König and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8, 432-439(2003).
[CrossRef] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259-264 (2004).
[CrossRef] [PubMed]

C.-Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8, 450-459 (2003).
[CrossRef] [PubMed]

F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, and R. Wepf, “Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm,” J. Biomed. Opt. 13, 041320 (2008).
[CrossRef] [PubMed]

J. Invest. Dermatol. (2)

T. Yasui, Y. Takahashi, T. Araki, Y. Ogura, Y. Matsunaga, and T. Kuwahara, “Observation of photoaged, dermal collagen fiber using polarization-resolved second-harmonic-generation microscopy,” J. Invest. Dermatol. 128, S40 (2008).

R. R. Anderson and J. A. Parish, “The optics of human skin,” J. Invest. Dermatol. 77, 13-19 (1981).
[CrossRef] [PubMed]

J. Microsc. (2)

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, “Highly efficient upconverters for multiphoton fluorescence microscopy,” J. Microsc. 189, 199-212 (1998).
[CrossRef]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

J. Structural Biol. (1)

G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53-62 (2003).
[CrossRef]

Opt. Express (8)

S.-Y. Chen, C.-Y. S. Hsu, and C.-K. Sun, “Epi-third and second harmonic generation microscopic imaging of abnormal enamel,” Opt. Express 16, 11670-11679 (2008).
[PubMed]

T. Yasui, Y. Takahashi, S. Fukushima, Y. Ogura, T. Yamashita, T. Kuwahara, T. Hirao, and T. Araki, “Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy,” Opt. Express 17, 912-923 (2009).
[PubMed]

P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123-1130 (2003).
[CrossRef] [PubMed]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093-3099 (2003).
[CrossRef] [PubMed]

S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13, 8231-8242 (2005).
[CrossRef] [PubMed]

T.-H. Tsai, S.-P. Tai, W.-J. Lee, H.-Y. Huang, Y.-H. Liao, and C.-K. Sun, “Optical signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy,” Opt. Express 14, 749-758 (2006).
[CrossRef] [PubMed]

J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “In vivo nonlinear spectral imaging in mouse skin,” Opt. Express 14, 4395-4402 (2006).
[CrossRef] [PubMed]

S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, “In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy,” Opt. Express 14, 6178-6187 (2006).
[CrossRef] [PubMed]

Opt. Lett. (6)

Opt. Quantum Electron. (1)

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light,” Opt. Quantum Electron. 37, 1397-1408 (2005).
[CrossRef]

Opt. Quantum. Electron (1)

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: a microspectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron 34, 1251-1266 (2002).
[CrossRef]

Photodermatol. Photoimmunol. Photomed. (1)

L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, “Collagen loss in photoaged human skin is overestimated by histochemistry,” Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
[CrossRef] [PubMed]

Other (1)

S.-Y. Chen and C.-K. Sun, “In vivo imaging of human skin using harmonic generation microscopy,” in Abstracts. Focus on Microscopy 2008 (2008), p. 59.

Supplementary Material (4)

» Media 1: MOV (3788 KB)     
» Media 2: MOV (2540 KB)     
» Media 3: MOV (2991 KB)     
» Media 4: MOV (3245 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: M, mirror; HS, harmonic separator; ND, neutral density filter; GM, galvano mirrors; RL1 and RL2, relay lenses; OL, oil-immersion objective lens; PZT, piezoelectric transducer; F, infrared-cut filter; PMT, photon-counting photomultiplier tube; L, lens.

Fig. 2
Fig. 2

Depth-resolved SHG imaging of dermal collagen fiber in porcine skin measured with (a) Ti:S SHG microscope and (b) Cr:F SHG microscope at 50 μm intervals. The image size is 400 μm by 400 μm and the image acquisition rate is 10   s / image . The movie (Media 1) shows consecutive change of their depth-resolved SHG images at 10 μm intervals.

Fig. 3
Fig. 3

Rapid SHG imaging of dermal collagen fiber in porcine skin. Ti:S SHG images at acquisition times of (a)  10   s and (b)  1   s , and Cr:F SHG images at acquisition times of (c)  10   s and (d)  1   s . The image size is 200 μm by 200 μm . The probing depth is fixed at 140 μm from the surface of the skin.

Fig. 4
Fig. 4

Cross-sectional images of dermal collagen fiber in hairless mouse skin measured at lateral intervals of 45 μm : (a) Cr:F SHG images and (b) confocal reflectance image. The image size is 300 μm width by 300 μm depth, and the image acquisition rate is 10   s / image . The movie (Media 2) shows a consecutive change of their cross-sectional images at 7.5 μm lateral intervals.

Fig. 5
Fig. 5

In vivo depth-resolved Cr:F SHG imaging of forearm skin of a slightly sunburned 57-year-old male measured at 50 μm intervals (a) inside and (b) outside the forearm skin. The image size is 600 μm by 600 μm , and the image acquisition rate is 2   s / image . The movie (Media 3) shows consecutive change of their depth-resolved SHG images at 10 μm intervals.

Fig. 6
Fig. 6

In vivo depth-resolved Cr:F SHG imaging of forearm skin of a well sunburned 37-year-old male measured at 50 μm intervals (a) inside and (b) outside the forearm skin. The image size is 600 μm by 600 μm , and the image acquisition rate is 2   s / image . The movie (Media 4) shows consecutive change of their depth- resolved SHG images at 10 μm intervals.

Metrics