Abstract

To suppress the scattering effect in transillumination imaging, a technique was developed to extract a near-axis scattered light (NASL) component from diffused light through a scattering medium. A diffuser is inserted between the light source and the incident surface of a scattering medium. We can extract the NASL component by subtracting the light intensity at the output surface with a diffuser from that without a diffuser. The principle to determine the subtraction weight was presented. In experiments using model phantoms of mammalian tissue, the proposed technique's effectiveness was verified. The cross-section of the propagation area of scattered light was confined to an 8% area around the optical axis of the incident light beam. The usefulness of this technique was demonstrated by transillumination imaging of the blood column through a diffuse medium.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kono, H. Ueki, and S. Umemura, “Near-infrared finger vein patterns for personal authentication,” Appl. Opt. 41, 7429-7434 (2002).
    [CrossRef]
  2. M. Kaneko, M. Hatakeyama, P. He, Y. Nakajima, H. Isoda, M. Takai, T. Okawada, M. Asumi, T. Kato, and S. Goto, “Construction of a laser transmission photo-scanner: pre-clinical investigation,” Radiat. Med. 7, 129-134 (1989).
  3. A. O. Wist, P. P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751-757 (1993).
    [CrossRef]
  4. J. C. Hebden, R. A. Kruger, and K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788-794 (1991).
  5. J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081-1087 (1992).
    [CrossRef]
  6. G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological and tissuelike phantoms,” Appl. Opt. 33, 6699-6710 (1994).
  7. E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169-185 (1992).
  8. S. Charbonneau, L. B. Allard, J. F. Young, G. Dyck, and B. J. Kyle, “Two-dimensional time-resolved imaging with 100 ps resolution using a resistive anode photomultiplier tube,” Rev. Sci. Instrum. 63, 5315-5319 (1992).
    [CrossRef]
  9. R. Berg, O. Jarlman, and S. Svanberg, “Medical transillumination imaging using short-pulse diode lasers,” Appl. Opt. 32, 574-579 (1993).
  10. D. A. Benaron, and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463-1466 (1993).
    [CrossRef]
  11. L. Wang, P. P. Ho, G. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769-771 (1991).
    [CrossRef]
  12. K. M. Yoo, B. B. Das, and R. R. Alfano, “Imaging of a translucent object hidden in a highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse,” Opt. Lett. 17, 958-960 (1992).
    [CrossRef]
  13. L. Wang, P. P. Ho, and R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” Appl. Opt. 32, 5043-5048 (1993).
  14. B. B. Das, K. M. Yoo, and R. R. Alfano, “Ultrafast time-gated imaging in thick tissue: a step toward optical mammography,” Opt. Lett. 18, 1092-1094 (1993).
    [CrossRef]
  15. Feng Liu, K. M. Yoo, and R. R. Alfano, “Transmitted photon intensity through biological tissue within various time windows,” Opt. Lett. 19, 740-742 (1994).
    [CrossRef]
  16. K. Shimizu and M. Kitama, “Fundamental study of near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383-388 (2000).
    [CrossRef]
  17. K. Takagi, Y. Kato, M. Kitama, and K. Shimizu, “Application of time-resolved measurement technique to the detection of near-axis scattered light,” in Biomedical Topical Meetings, Technical Digest (Optical Society of America, 2000), paper TuF15-1.
  18. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507-4514 (1991).
  19. Valery Tuchin, Tissue Optics Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).

2002 (1)

2000 (3)

K. Shimizu and M. Kitama, “Fundamental study of near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383-388 (2000).
[CrossRef]

K. Takagi, Y. Kato, M. Kitama, and K. Shimizu, “Application of time-resolved measurement technique to the detection of near-axis scattered light,” in Biomedical Topical Meetings, Technical Digest (Optical Society of America, 2000), paper TuF15-1.

Valery Tuchin, Tissue Optics Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).

1994 (2)

1993 (5)

1992 (4)

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081-1087 (1992).
[CrossRef]

K. M. Yoo, B. B. Das, and R. R. Alfano, “Imaging of a translucent object hidden in a highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse,” Opt. Lett. 17, 958-960 (1992).
[CrossRef]

E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169-185 (1992).

S. Charbonneau, L. B. Allard, J. F. Young, G. Dyck, and B. J. Kyle, “Two-dimensional time-resolved imaging with 100 ps resolution using a resistive anode photomultiplier tube,” Rev. Sci. Instrum. 63, 5315-5319 (1992).
[CrossRef]

1991 (3)

1989 (1)

M. Kaneko, M. Hatakeyama, P. He, Y. Nakajima, H. Isoda, M. Takai, T. Okawada, M. Asumi, T. Kato, and S. Goto, “Construction of a laser transmission photo-scanner: pre-clinical investigation,” Radiat. Med. 7, 129-134 (1989).

Alfano, R. R.

Allard, L. B.

S. Charbonneau, L. B. Allard, J. F. Young, G. Dyck, and B. J. Kyle, “Two-dimensional time-resolved imaging with 100 ps resolution using a resistive anode photomultiplier tube,” Rev. Sci. Instrum. 63, 5315-5319 (1992).
[CrossRef]

Asumi, M.

M. Kaneko, M. Hatakeyama, P. He, Y. Nakajima, H. Isoda, M. Takai, T. Okawada, M. Asumi, T. Kato, and S. Goto, “Construction of a laser transmission photo-scanner: pre-clinical investigation,” Radiat. Med. 7, 129-134 (1989).

Benaron, D. A.

D. A. Benaron, and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463-1466 (1993).
[CrossRef]

Berg, R.

Charbonneau, S.

S. Charbonneau, L. B. Allard, J. F. Young, G. Dyck, and B. J. Kyle, “Two-dimensional time-resolved imaging with 100 ps resolution using a resistive anode photomultiplier tube,” Rev. Sci. Instrum. 63, 5315-5319 (1992).
[CrossRef]

Das, B. B.

Dyck, G.

S. Charbonneau, L. B. Allard, J. F. Young, G. Dyck, and B. J. Kyle, “Two-dimensional time-resolved imaging with 100 ps resolution using a resistive anode photomultiplier tube,” Rev. Sci. Instrum. 63, 5315-5319 (1992).
[CrossRef]

Fatouros, P. P.

A. O. Wist, P. P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751-757 (1993).
[CrossRef]

Goto, S.

M. Kaneko, M. Hatakeyama, P. He, Y. Nakajima, H. Isoda, M. Takai, T. Okawada, M. Asumi, T. Kato, and S. Goto, “Construction of a laser transmission photo-scanner: pre-clinical investigation,” Radiat. Med. 7, 129-134 (1989).

Hatakeyama, M.

M. Kaneko, M. Hatakeyama, P. He, Y. Nakajima, H. Isoda, M. Takai, T. Okawada, M. Asumi, T. Kato, and S. Goto, “Construction of a laser transmission photo-scanner: pre-clinical investigation,” Radiat. Med. 7, 129-134 (1989).

He, P.

M. Kaneko, M. Hatakeyama, P. He, Y. Nakajima, H. Isoda, M. Takai, T. Okawada, M. Asumi, T. Kato, and S. Goto, “Construction of a laser transmission photo-scanner: pre-clinical investigation,” Radiat. Med. 7, 129-134 (1989).

Hebden, J. C.

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081-1087 (1992).
[CrossRef]

J. C. Hebden, R. A. Kruger, and K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788-794 (1991).

Herr, S. L.

A. O. Wist, P. P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751-757 (1993).
[CrossRef]

Ho, P. P.

L. Wang, P. P. Ho, and R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” Appl. Opt. 32, 5043-5048 (1993).

L. Wang, P. P. Ho, G. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769-771 (1991).
[CrossRef]

Isoda, H.

M. Kaneko, M. Hatakeyama, P. He, Y. Nakajima, H. Isoda, M. Takai, T. Okawada, M. Asumi, T. Kato, and S. Goto, “Construction of a laser transmission photo-scanner: pre-clinical investigation,” Radiat. Med. 7, 129-134 (1989).

Jarlman, O.

Johnson, M. L.

E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169-185 (1992).

Kaneko, M.

M. Kaneko, M. Hatakeyama, P. He, Y. Nakajima, H. Isoda, M. Takai, T. Okawada, M. Asumi, T. Kato, and S. Goto, “Construction of a laser transmission photo-scanner: pre-clinical investigation,” Radiat. Med. 7, 129-134 (1989).

Kato, T.

M. Kaneko, M. Hatakeyama, P. He, Y. Nakajima, H. Isoda, M. Takai, T. Okawada, M. Asumi, T. Kato, and S. Goto, “Construction of a laser transmission photo-scanner: pre-clinical investigation,” Radiat. Med. 7, 129-134 (1989).

Kato, Y.

K. Takagi, Y. Kato, M. Kitama, and K. Shimizu, “Application of time-resolved measurement technique to the detection of near-axis scattered light,” in Biomedical Topical Meetings, Technical Digest (Optical Society of America, 2000), paper TuF15-1.

Kitama, M.

K. Takagi, Y. Kato, M. Kitama, and K. Shimizu, “Application of time-resolved measurement technique to the detection of near-axis scattered light,” in Biomedical Topical Meetings, Technical Digest (Optical Society of America, 2000), paper TuF15-1.

K. Shimizu and M. Kitama, “Fundamental study of near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383-388 (2000).
[CrossRef]

Kolzer, J.

Kono, M.

Kruger, R. A.

Kyle, B. J.

S. Charbonneau, L. B. Allard, J. F. Young, G. Dyck, and B. J. Kyle, “Two-dimensional time-resolved imaging with 100 ps resolution using a resistive anode photomultiplier tube,” Rev. Sci. Instrum. 63, 5315-5319 (1992).
[CrossRef]

Lakowicz, J. R.

E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169-185 (1992).

Liu, Feng

Liu, G.

L. Wang, P. P. Ho, G. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769-771 (1991).
[CrossRef]

Mitic, G.

Moes, C. J. M.

Nakajima, Y.

M. Kaneko, M. Hatakeyama, P. He, Y. Nakajima, H. Isoda, M. Takai, T. Okawada, M. Asumi, T. Kato, and S. Goto, “Construction of a laser transmission photo-scanner: pre-clinical investigation,” Radiat. Med. 7, 129-134 (1989).

Nowaczyk, K.

E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169-185 (1992).

Okawada, T.

M. Kaneko, M. Hatakeyama, P. He, Y. Nakajima, H. Isoda, M. Takai, T. Okawada, M. Asumi, T. Kato, and S. Goto, “Construction of a laser transmission photo-scanner: pre-clinical investigation,” Radiat. Med. 7, 129-134 (1989).

Otto, J.

Plies, E.

Prahl, S. A.

Sevick, E. M.

E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169-185 (1992).

Shimizu, K.

K. Shimizu and M. Kitama, “Fundamental study of near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383-388 (2000).
[CrossRef]

K. Takagi, Y. Kato, M. Kitama, and K. Shimizu, “Application of time-resolved measurement technique to the detection of near-axis scattered light,” in Biomedical Topical Meetings, Technical Digest (Optical Society of America, 2000), paper TuF15-1.

Solkner, G.

Stevenson, D. K.

D. A. Benaron, and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463-1466 (1993).
[CrossRef]

Svanberg, S.

Szmacinski, H.

E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169-185 (1992).

Takagi, K.

K. Takagi, Y. Kato, M. Kitama, and K. Shimizu, “Application of time-resolved measurement technique to the detection of near-axis scattered light,” in Biomedical Topical Meetings, Technical Digest (Optical Society of America, 2000), paper TuF15-1.

Takai, M.

M. Kaneko, M. Hatakeyama, P. He, Y. Nakajima, H. Isoda, M. Takai, T. Okawada, M. Asumi, T. Kato, and S. Goto, “Construction of a laser transmission photo-scanner: pre-clinical investigation,” Radiat. Med. 7, 129-134 (1989).

Tuchin, Valery

Valery Tuchin, Tissue Optics Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).

Ueki, H.

Umemura, S.

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. J.

Wang, L.

L. Wang, P. P. Ho, and R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” Appl. Opt. 32, 5043-5048 (1993).

L. Wang, P. P. Ho, G. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769-771 (1991).
[CrossRef]

Wist, A. O.

A. O. Wist, P. P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751-757 (1993).
[CrossRef]

Wong, K. S.

Yoo, K. M.

Young, J. F.

S. Charbonneau, L. B. Allard, J. F. Young, G. Dyck, and B. J. Kyle, “Two-dimensional time-resolved imaging with 100 ps resolution using a resistive anode photomultiplier tube,” Rev. Sci. Instrum. 63, 5315-5319 (1992).
[CrossRef]

Zhang, G.

L. Wang, P. P. Ho, G. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769-771 (1991).
[CrossRef]

Zinth, W.

Appl. Opt. (6)

IEEE Trans. Med. Imaging (1)

A. O. Wist, P. P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751-757 (1993).
[CrossRef]

J. Photochem. Photobiol. B (1)

E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169-185 (1992).

Med. Phys. (1)

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081-1087 (1992).
[CrossRef]

Opt. Lett. (3)

Opt. Rev. (1)

K. Shimizu and M. Kitama, “Fundamental study of near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383-388 (2000).
[CrossRef]

Radiat. Med. (1)

M. Kaneko, M. Hatakeyama, P. He, Y. Nakajima, H. Isoda, M. Takai, T. Okawada, M. Asumi, T. Kato, and S. Goto, “Construction of a laser transmission photo-scanner: pre-clinical investigation,” Radiat. Med. 7, 129-134 (1989).

Rev. Sci. Instrum. (1)

S. Charbonneau, L. B. Allard, J. F. Young, G. Dyck, and B. J. Kyle, “Two-dimensional time-resolved imaging with 100 ps resolution using a resistive anode photomultiplier tube,” Rev. Sci. Instrum. 63, 5315-5319 (1992).
[CrossRef]

Science (2)

D. A. Benaron, and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463-1466 (1993).
[CrossRef]

L. Wang, P. P. Ho, G. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769-771 (1991).
[CrossRef]

Other (2)

K. Takagi, Y. Kato, M. Kitama, and K. Shimizu, “Application of time-resolved measurement technique to the detection of near-axis scattered light,” in Biomedical Topical Meetings, Technical Digest (Optical Society of America, 2000), paper TuF15-1.

Valery Tuchin, Tissue Optics Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics