Abstract

The application of a novel photoacoustic imaging instrument based on a Fabry-Perot polymer film sensing interferometer to imaging the small animal brain is described. This approach provides a convenient backward mode sensing configuration that offers the prospect of overcoming the limitations of existing piezoelectric based detection schemes for small animal brain imaging. Noninvasive images of the vasculature in the mouse brain were obtained at different wavelengths between 590 and 889 nm, showing that the cerebral vascular anatomy can be visualized with high contrast and spatial resolution to depths up to 3.7 mm. It is considered that the instrument has a role to play in characterizing small animal models of human disease and injury processes such as stroke, epilepsy, and traumatic brain injury.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Lythgoe, N. R. Sibson, and N. G. Harris, “Neuroimaging of animal models of brain disease,” Br. Med. Bull. 65, 235-257 (2003).
    [CrossRef]
  2. R. S. Balaban and V. A. Hampshire, “Challenges in small animal noninvasive imaging,” ILAR J. 42, 248-263 (2001).
  3. E. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J Biomed. Opt. 12, 051402 (2007).
  4. L. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  5. M. Cope, “The application of near infrared spectroscopy to noninvasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. dissertation (University College London, 1991).
  6. S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol. 49, R13-R48 (2004).
    [CrossRef]
  7. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R3 (2005).
    [CrossRef]
  8. J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
    [CrossRef]
  9. P. C. Beard, “Flow velocity measurements,” UK patent application, WO 03/039364 (2001).
  10. H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007).
    [CrossRef]
  11. A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
    [CrossRef]
  12. M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
    [CrossRef]
  13. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
    [CrossRef]
  14. X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730-732 (2004).
    [CrossRef]
  15. S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
    [CrossRef]
  16. Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
    [CrossRef]
  17. K. H. Song, G. Stoica, and L. V. Wang, “In vivo three-dimensional photoacoustic tomography of a whole mouse head,” Opt. Lett. 31, 2453-2455 (2006).
    [CrossRef]
  18. R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).
  19. X. Wang, Y. Pang, and G. Ku, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739-1741 (2003).
    [CrossRef]
  20. J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
  21. L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 171-179 (2008).
    [CrossRef]
  22. E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy,” Proc. SPIE 6856, 68561J (2008).
  23. E. Zhang, J. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry Perot polymer film ultrasound sensor for high resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008).
    [CrossRef]
  24. K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
    [CrossRef]
  25. E. Z. Zhang, J. Laufer, and P. C. Beard, “Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 643710S (2007).
  26. British Standard BS EN 60825-1, “Safety of laser products. Equipment classification, requirements and user's guide,” 1994.
  27. http://www.medphys.ucl.ac.uk/research/mle/images.htm.
  28. K. Maslov, H. F. Zhang, and L. V. Wang, “Portable real-time photoacoustic microscopy,” Proc. SPIE 6437, 643727(2007).
  29. T. J. Allen and P. C. Beard, “Pulsed NIR laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31, 3462-3464 (2006).
    [CrossRef]
  30. M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot polymer film sensor,” Electron. Lett. 42, 187-189(2006).
    [CrossRef]

2008 (7)

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).

L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 171-179 (2008).
[CrossRef]

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy,” Proc. SPIE 6856, 68561J (2008).

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef]

E. Zhang, J. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry Perot polymer film ultrasound sensor for high resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008).
[CrossRef]

2007 (7)

E. Z. Zhang, J. Laufer, and P. C. Beard, “Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 643710S (2007).

K. Maslov, H. F. Zhang, and L. V. Wang, “Portable real-time photoacoustic microscopy,” Proc. SPIE 6437, 643727(2007).

H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007).
[CrossRef]

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef]

E. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J Biomed. Opt. 12, 051402 (2007).

L. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
[CrossRef]

2006 (3)

2005 (1)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R3 (2005).
[CrossRef]

2004 (2)

2003 (4)

X. Wang, Y. Pang, and G. Ku, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739-1741 (2003).
[CrossRef]

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).

M. F. Lythgoe, N. R. Sibson, and N. G. Harris, “Neuroimaging of animal models of brain disease,” Br. Med. Bull. 65, 235-257 (2003).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef]

2001 (3)

K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
[CrossRef]

R. S. Balaban and V. A. Hampshire, “Challenges in small animal noninvasive imaging,” ILAR J. 42, 248-263 (2001).

P. C. Beard, “Flow velocity measurements,” UK patent application, WO 03/039364 (2001).

1994 (1)

British Standard BS EN 60825-1, “Safety of laser products. Equipment classification, requirements and user's guide,” 1994.

1991 (1)

M. Cope, “The application of near infrared spectroscopy to noninvasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. dissertation (University College London, 1991).

Aguirre, A.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).

Allen, T. J.

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R3 (2005).
[CrossRef]

Balaban, R. S.

R. S. Balaban and V. A. Hampshire, “Challenges in small animal noninvasive imaging,” ILAR J. 42, 248-263 (2001).

Beard, P. C.

E. Zhang, J. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry Perot polymer film ultrasound sensor for high resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008).
[CrossRef]

E. Z. Zhang, J. Laufer, and P. C. Beard, “Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 643710S (2007).

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
[CrossRef]

T. J. Allen and P. C. Beard, “Pulsed NIR laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31, 3462-3464 (2006).
[CrossRef]

M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot polymer film sensor,” Electron. Lett. 42, 187-189(2006).
[CrossRef]

P. C. Beard, “Flow velocity measurements,” UK patent application, WO 03/039364 (2001).

Bebie, H.

K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
[CrossRef]

Bodapati, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Bornhop, D. J.

Carney, P.

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef]

Castillo, F.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).

Chen, H.

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef]

Chen, X.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Cheng, Z.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Cherry, S. R.

S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol. 49, R13-R48 (2004).
[CrossRef]

Cope, M.

M. Cope, “The application of near infrared spectroscopy to noninvasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. dissertation (University College London, 1991).

Dai, H.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

De La Zerda, A.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Delpy, D. T.

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
[CrossRef]

Elwell, C. E.

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
[CrossRef]

Fang, H.

H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007).
[CrossRef]

Frenz, M.

K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
[CrossRef]

Gambhir, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Gamelin, J.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R3 (2005).
[CrossRef]

Hampshire, V. A.

R. S. Balaban and V. A. Hampshire, “Challenges in small animal noninvasive imaging,” ILAR J. 42, 248-263 (2001).

Harris, N. G.

M. F. Lythgoe, N. R. Sibson, and N. G. Harris, “Neuroimaging of animal models of brain disease,” Br. Med. Bull. 65, 235-257 (2003).
[CrossRef]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R3 (2005).
[CrossRef]

Hillman, E.

E. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J Biomed. Opt. 12, 051402 (2007).

Huang, F.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).

Jiang, H.

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef]

Keren, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Khuri-yakub, B.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Kiser, W. L.

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).

Koestli, K.

K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
[CrossRef]

Kruger, G. A.

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).

Kruger, R. A.

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).

Ku, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730-732 (2004).
[CrossRef]

X. Wang, Y. Pang, and G. Ku, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739-1741 (2003).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef]

Lamont, M.

M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot polymer film sensor,” Electron. Lett. 42, 187-189(2006).
[CrossRef]

Lao, Y.

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef]

Laufer, J.

E. Zhang, J. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry Perot polymer film ultrasound sensor for high resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008).
[CrossRef]

E. Z. Zhang, J. Laufer, and P. C. Beard, “Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 643710S (2007).

Laufer, J. G.

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
[CrossRef]

Levi, J.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Li, C.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

Li, M.-L.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

Liu, Z.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef]

Lungu, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

Lythgoe, M. F.

M. F. Lythgoe, N. R. Sibson, and N. G. Harris, “Neuroimaging of animal models of brain disease,” Br. Med. Bull. 65, 235-257 (2003).
[CrossRef]

Maslov, K.

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy,” Proc. SPIE 6856, 68561J (2008).

K. Maslov, H. F. Zhang, and L. V. Wang, “Portable real-time photoacoustic microscopy,” Proc. SPIE 6437, 643727(2007).

H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007).
[CrossRef]

Maurudis, A.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).

Miller, K. D.

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).

Oh, J.-T.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

Oralkan, O.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef]

X. Wang, Y. Pang, and G. Ku, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739-1741 (2003).
[CrossRef]

Reinecke, D. R.

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).

Roper, S.

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef]

Sibson, N. R.

M. F. Lythgoe, N. R. Sibson, and N. G. Harris, “Neuroimaging of animal models of brain disease,” Br. Med. Bull. 65, 235-257 (2003).
[CrossRef]

Smith, B.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Song, K. H.

Stein, E. W.

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy,” Proc. SPIE 6856, 68561J (2008).

Stoica, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

K. H. Song, G. Stoica, and L. V. Wang, “In vivo three-dimensional photoacoustic tomography of a whole mouse head,” Opt. Lett. 31, 2453-2455 (2006).
[CrossRef]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730-732 (2004).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef]

Te-Jen, M.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Vaithilingam, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Wang, L.

L. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Wang, L. V.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy,” Proc. SPIE 6856, 68561J (2008).

L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 171-179 (2008).
[CrossRef]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).

K. Maslov, H. F. Zhang, and L. V. Wang, “Portable real-time photoacoustic microscopy,” Proc. SPIE 6437, 643727(2007).

H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007).
[CrossRef]

K. H. Song, G. Stoica, and L. V. Wang, “In vivo three-dimensional photoacoustic tomography of a whole mouse head,” Opt. Lett. 31, 2453-2455 (2006).
[CrossRef]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730-732 (2004).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef]

Wang, W.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

Wang, X.

Weber, H.

K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
[CrossRef]

Wegiel, M. A.

Wu, H.-i.

L. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Xiang, L.

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef]

Xie, X.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef]

Xing, D.

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef]

Yang, S.

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef]

Yuan, Z.

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef]

Zavaleta, C.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Zhang, E.

Zhang, E. Z.

E. Z. Zhang, J. Laufer, and P. C. Beard, “Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 643710S (2007).

Zhang, H. F.

K. Maslov, H. F. Zhang, and L. V. Wang, “Portable real-time photoacoustic microscopy,” Proc. SPIE 6437, 643727(2007).

Zhang, Q.

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef]

Zhou, Q.

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef]

Zhu, Q.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).

Appl. Opt. (1)

Br. Med. Bull. (1)

M. F. Lythgoe, N. R. Sibson, and N. G. Harris, “Neuroimaging of animal models of brain disease,” Br. Med. Bull. 65, 235-257 (2003).
[CrossRef]

Electron. Lett. (1)

M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot polymer film sensor,” Electron. Lett. 42, 187-189(2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 171-179 (2008).
[CrossRef]

ILAR J. (1)

R. S. Balaban and V. A. Hampshire, “Challenges in small animal noninvasive imaging,” ILAR J. 42, 248-263 (2001).

J Biomed. Opt. (1)

E. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J Biomed. Opt. 12, 051402 (2007).

J. Biomed. Opt. (1)

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).

Med. Phys. (1)

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef]

Mol. Imaging (1)

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).

Nat. Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef]

Nat. Nanotechnol. (1)

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef]

Opt. Lett. (4)

Phys. Med. Biol. (5)

K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
[CrossRef]

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef]

S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol. 49, R13-R48 (2004).
[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R3 (2005).
[CrossRef]

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
[CrossRef]

Phys. Rev. Lett. (1)

H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007).
[CrossRef]

Proc. IEEE (1)

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

Proc. SPIE (3)

E. Z. Zhang, J. Laufer, and P. C. Beard, “Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 643710S (2007).

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy,” Proc. SPIE 6856, 68561J (2008).

K. Maslov, H. F. Zhang, and L. V. Wang, “Portable real-time photoacoustic microscopy,” Proc. SPIE 6437, 643727(2007).

Other (5)

British Standard BS EN 60825-1, “Safety of laser products. Equipment classification, requirements and user's guide,” 1994.

http://www.medphys.ucl.ac.uk/research/mle/images.htm.

P. C. Beard, “Flow velocity measurements,” UK patent application, WO 03/039364 (2001).

L. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

M. Cope, “The application of near infrared spectroscopy to noninvasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. dissertation (University College London, 1991).

Supplementary Material (3)

» Media 1: MOV (2814 KB)     
» Media 2: MOV (5878 KB)     
» Media 3: MOV (8254 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics