Abstract

We present a dual-imaging technique combining laser speckle contrast imaging and spectral-domain Doppler optical coherence tomography to enable quantitative characterization of local cerebral blood flow (CBF) changes in rat cortex in response to drug stimulus (e.g., cocaine) at high spatiotemporal resolutions. To examine the utility of this new technique, animal experiments were performed to study the influences of anesthetic regimes (e.g., isoflurane, α-chloralose) on the pharmadynamic effects of acute cocaine challenge. The results showed that cocaine-evoked CBF patterns (e.g., increases in α-chloralose and decreases in isoflurane regimes) were quantitatively characterized, thus rendering it a potentially useful tool for imaging studies of brain functions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Bardo, “Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens,” Crit. Rev. Neurobiol. 12, 37-67 (1998).
    [PubMed]
  2. J. J. Marota, J. B. Mandeville, R. M. Weisskoff, M. A. Moskowitz, B. R. Rosen, and B. E. Kosofsky, “Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in rat,” NeuroImage 11, 13-23 (2000).
    [CrossRef] [PubMed]
  3. K. F. Schmidt, M. Febo, Q. Shen, F. Luo, K. M. Sicard, C. F. Ferris, E. A. Stein, and T. Q. Duong, “Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI,” Psychopharmacology 185, 479-486 (2006).
    [PubMed]
  4. J. C. Brust, “Vasculitis owing to substance abuse,” Neurol. Clin. 15, 945-957 (1997).
    [CrossRef]
  5. N. E. Martinez, E. Diez-Tejedor, and A. Frank, “Vasospasm/thrombus in cerebral ischemia related to cocaine abuse,” Stroke 27, 147-148 (1996).
    [PubMed]
  6. A. Buttner, G. Mall, R. Penning, and H. Sachs, “The neuropathology of cocaine abuse,” Leg. Med. (Tokyo) 5, S240-S242 (2003).
    [CrossRef]
  7. R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
    [CrossRef] [PubMed]
  8. M. J. Kaufman, J. M. Levin, L. C. Maas, S. L. Rose, S. E. Lukas, J. H. Mendelson, B. M. Cohen 1, and P. F. Renshaw, “Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study,” Psychopharmacology 138, 76-81 (1998).
    [CrossRef] [PubMed]
  9. E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990).
    [CrossRef] [PubMed]
  10. G. D. Pearlson, P. J. Jeffery, G. J. Harris, C. A. Ross, M. W. Fischman, and E. E. Camargo, “Correlation of acute cocaine-induced changes in local cerebral blood flow with subjective effects,” Am. J. Psychiatry 150, 495-497 (1993).
    [PubMed]
  11. E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996).
    [CrossRef] [PubMed]
  12. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-179 (1996).
    [CrossRef]
  13. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 2001, R35-R66.
    [CrossRef]
  14. T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
    [CrossRef] [PubMed]
  15. A. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-289 (2005).
    [CrossRef] [PubMed]
  16. R. Wang, S. Jacques, Z. Ma, S. Hurst, S. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15, 4083-4097 (2007).
    [CrossRef] [PubMed]
  17. Z. Luo, Z. Wang, Z. Yuan, C. Du, and Y. Pan, “Optical coherence Doppler tomography quantifies laser speckle contrast imaging for blood flow imaging in the rat cerebral cortex,” Opt. Lett. 33, 1156-1158 (2008).
    [CrossRef] [PubMed]
  18. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116-3121 (2003).
    [PubMed]
  19. T. Maekawa, C. Tommasino, H. M. Shapiro, J. Keifer-Goodman, and R. W. Kohlenberger, “Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat,” Anesthesiology 65, 144-151 (1986).
    [CrossRef] [PubMed]
  20. C. Lenz, T. Frietsch, C. Futterer, A. Rebel, K. van Ackern, W. Kuschinsky, and K. F. Waschke, “Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane,” Anesthesiology 91, 1720-1723 (1999).
    [CrossRef] [PubMed]
  21. H. Iida, C. A. Gleason, T. P. O'Brien, and R. J. Traystman, “Fetal response to acute fetal cocaine injection in sheep,” Am. J. Physiol. 267, H1968-H1975 (1994).
    [PubMed]
  22. C. A. Gleason and R. J. Traystman, “Cerebral responses to maternal cocaine injection in immature fetal sheep,” Pediatr. Res. 38, 943-948 (1995).
    [CrossRef] [PubMed]
  23. E. K. Anday, R. Lien, J. M. Goplerud, D. C. Kurth, and L. M. Shaw, “Pharmacokinetics and effect of cocaine on cerebral blood flow in the newborn,” Dev. Pharmacol. Ther. 20, 35-44 (1993).
    [PubMed]
  24. M. Yonetani, N. Lajevardi, A. Pastuszko, and M. Delivoria-Papadopoulos, “Dopamine, blood flow and oxygen pressure in brain of newborn piglets,” Biochem. Med. Metabol. Biol. 51, 91-97 (1994).
    [CrossRef]
  25. M. R. Stankovic, A. Fujii, D. Maulik, D. Kirby, and P. G. Stubblefield, “Optical brain monitoring of the cerebrovascular effects induced by acute cocaine exposure in neonatal pigs,” J. Maternal-Fetal Investig. 8, 108-112 (1998).
  26. M. L. Albuquerque, C. L. Monito, L. Shaw, and E. K. Anday, “Ethanol, morphine and barbiturate alter the hemodynamic and cerebral response to cocaine in newborn pigs,” Biol. Neonate 67, 432-440 (1995).
    [CrossRef] [PubMed]
  27. F. Luo, G. Wu, Z. Li, and S. J. Li, “Characterization of effects of mean arterial blood pressure induced by cocaine and cocaine methiodide on BOLD signals in rat brain,” Magn. Reson. Med. 49, 264-270 (2003).
    [CrossRef] [PubMed]
  28. C. Du, M. Yu, N. D. Volkow, A. P. Koretsky, J. S. Fowler, and H. Benveniste, “Cocaine increases intracellular concentration of calcium in brain independently of its cerebrovascular effects,” J. Neurosci. 26, 11522-11531, (2006).
    [CrossRef] [PubMed]
  29. C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, “Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence,” J. Cereb. Blood Flow Metab. 25, 1078-1092 (2005).
    [CrossRef] [PubMed]
  30. K. Masamoto, T. Kim, M. Fukuda, P. Wang, and S. G. Kim, “Relationship between neural, vascular and BOLD signals in isoflurane-anesthetized rat somatosensory cortex,” Cereb. Cortex 17, 942-950 (2007).
    [CrossRef]
  31. G. Bonvento, R. Charbonné, J. L. Corrèze, J. Borredon, J. Seylaz, and P. Lacombe, “Is alpha-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research?” Brain Res. 665, 213-221 (1994).
    [CrossRef] [PubMed]

2008 (1)

2007 (2)

R. Wang, S. Jacques, Z. Ma, S. Hurst, S. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15, 4083-4097 (2007).
[CrossRef] [PubMed]

K. Masamoto, T. Kim, M. Fukuda, P. Wang, and S. G. Kim, “Relationship between neural, vascular and BOLD signals in isoflurane-anesthetized rat somatosensory cortex,” Cereb. Cortex 17, 942-950 (2007).
[CrossRef]

2006 (2)

C. Du, M. Yu, N. D. Volkow, A. P. Koretsky, J. S. Fowler, and H. Benveniste, “Cocaine increases intracellular concentration of calcium in brain independently of its cerebrovascular effects,” J. Neurosci. 26, 11522-11531, (2006).
[CrossRef] [PubMed]

K. F. Schmidt, M. Febo, Q. Shen, F. Luo, K. M. Sicard, C. F. Ferris, E. A. Stein, and T. Q. Duong, “Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI,” Psychopharmacology 185, 479-486 (2006).
[PubMed]

2005 (2)

A. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-289 (2005).
[CrossRef] [PubMed]

C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, “Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence,” J. Cereb. Blood Flow Metab. 25, 1078-1092 (2005).
[CrossRef] [PubMed]

2004 (1)

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

2003 (3)

F. Luo, G. Wu, Z. Li, and S. J. Li, “Characterization of effects of mean arterial blood pressure induced by cocaine and cocaine methiodide on BOLD signals in rat brain,” Magn. Reson. Med. 49, 264-270 (2003).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116-3121 (2003).
[PubMed]

A. Buttner, G. Mall, R. Penning, and H. Sachs, “The neuropathology of cocaine abuse,” Leg. Med. (Tokyo) 5, S240-S242 (2003).
[CrossRef]

2001 (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 2001, R35-R66.
[CrossRef]

2000 (1)

J. J. Marota, J. B. Mandeville, R. M. Weisskoff, M. A. Moskowitz, B. R. Rosen, and B. E. Kosofsky, “Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in rat,” NeuroImage 11, 13-23 (2000).
[CrossRef] [PubMed]

1999 (1)

C. Lenz, T. Frietsch, C. Futterer, A. Rebel, K. van Ackern, W. Kuschinsky, and K. F. Waschke, “Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane,” Anesthesiology 91, 1720-1723 (1999).
[CrossRef] [PubMed]

1998 (4)

M. T. Bardo, “Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens,” Crit. Rev. Neurobiol. 12, 37-67 (1998).
[PubMed]

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

M. J. Kaufman, J. M. Levin, L. C. Maas, S. L. Rose, S. E. Lukas, J. H. Mendelson, B. M. Cohen 1, and P. F. Renshaw, “Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study,” Psychopharmacology 138, 76-81 (1998).
[CrossRef] [PubMed]

M. R. Stankovic, A. Fujii, D. Maulik, D. Kirby, and P. G. Stubblefield, “Optical brain monitoring of the cerebrovascular effects induced by acute cocaine exposure in neonatal pigs,” J. Maternal-Fetal Investig. 8, 108-112 (1998).

1997 (1)

J. C. Brust, “Vasculitis owing to substance abuse,” Neurol. Clin. 15, 945-957 (1997).
[CrossRef]

1996 (3)

N. E. Martinez, E. Diez-Tejedor, and A. Frank, “Vasospasm/thrombus in cerebral ischemia related to cocaine abuse,” Stroke 27, 147-148 (1996).
[PubMed]

E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996).
[CrossRef] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

1995 (2)

M. L. Albuquerque, C. L. Monito, L. Shaw, and E. K. Anday, “Ethanol, morphine and barbiturate alter the hemodynamic and cerebral response to cocaine in newborn pigs,” Biol. Neonate 67, 432-440 (1995).
[CrossRef] [PubMed]

C. A. Gleason and R. J. Traystman, “Cerebral responses to maternal cocaine injection in immature fetal sheep,” Pediatr. Res. 38, 943-948 (1995).
[CrossRef] [PubMed]

1994 (3)

M. Yonetani, N. Lajevardi, A. Pastuszko, and M. Delivoria-Papadopoulos, “Dopamine, blood flow and oxygen pressure in brain of newborn piglets,” Biochem. Med. Metabol. Biol. 51, 91-97 (1994).
[CrossRef]

G. Bonvento, R. Charbonné, J. L. Corrèze, J. Borredon, J. Seylaz, and P. Lacombe, “Is alpha-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research?” Brain Res. 665, 213-221 (1994).
[CrossRef] [PubMed]

H. Iida, C. A. Gleason, T. P. O'Brien, and R. J. Traystman, “Fetal response to acute fetal cocaine injection in sheep,” Am. J. Physiol. 267, H1968-H1975 (1994).
[PubMed]

1993 (2)

G. D. Pearlson, P. J. Jeffery, G. J. Harris, C. A. Ross, M. W. Fischman, and E. E. Camargo, “Correlation of acute cocaine-induced changes in local cerebral blood flow with subjective effects,” Am. J. Psychiatry 150, 495-497 (1993).
[PubMed]

E. K. Anday, R. Lien, J. M. Goplerud, D. C. Kurth, and L. M. Shaw, “Pharmacokinetics and effect of cocaine on cerebral blood flow in the newborn,” Dev. Pharmacol. Ther. 20, 35-44 (1993).
[PubMed]

1990 (1)

E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990).
[CrossRef] [PubMed]

1986 (1)

T. Maekawa, C. Tommasino, H. M. Shapiro, J. Keifer-Goodman, and R. W. Kohlenberger, “Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat,” Anesthesiology 65, 144-151 (1986).
[CrossRef] [PubMed]

Albuquerque, M. L.

M. L. Albuquerque, C. L. Monito, L. Shaw, and E. K. Anday, “Ethanol, morphine and barbiturate alter the hemodynamic and cerebral response to cocaine in newborn pigs,” Biol. Neonate 67, 432-440 (1995).
[CrossRef] [PubMed]

Anday, E. K.

M. L. Albuquerque, C. L. Monito, L. Shaw, and E. K. Anday, “Ethanol, morphine and barbiturate alter the hemodynamic and cerebral response to cocaine in newborn pigs,” Biol. Neonate 67, 432-440 (1995).
[CrossRef] [PubMed]

E. K. Anday, R. Lien, J. M. Goplerud, D. C. Kurth, and L. M. Shaw, “Pharmacokinetics and effect of cocaine on cerebral blood flow in the newborn,” Dev. Pharmacol. Ther. 20, 35-44 (1993).
[PubMed]

Bajraszewski, T.

Bardo, M. T.

M. T. Bardo, “Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens,” Crit. Rev. Neurobiol. 12, 37-67 (1998).
[PubMed]

Benveniste, H.

C. Du, M. Yu, N. D. Volkow, A. P. Koretsky, J. S. Fowler, and H. Benveniste, “Cocaine increases intracellular concentration of calcium in brain independently of its cerebrovascular effects,” J. Neurosci. 26, 11522-11531, (2006).
[CrossRef] [PubMed]

C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, “Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence,” J. Cereb. Blood Flow Metab. 25, 1078-1092 (2005).
[CrossRef] [PubMed]

Boas, D. A.

A. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-289 (2005).
[CrossRef] [PubMed]

Bonvento, G.

G. Bonvento, R. Charbonné, J. L. Corrèze, J. Borredon, J. Seylaz, and P. Lacombe, “Is alpha-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research?” Brain Res. 665, 213-221 (1994).
[CrossRef] [PubMed]

Borredon, J.

G. Bonvento, R. Charbonné, J. L. Corrèze, J. Borredon, J. Seylaz, and P. Lacombe, “Is alpha-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research?” Brain Res. 665, 213-221 (1994).
[CrossRef] [PubMed]

Breiter, H. C.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 2001, R35-R66.
[CrossRef]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

Brust, J. C.

J. C. Brust, “Vasculitis owing to substance abuse,” Neurol. Clin. 15, 945-957 (1997).
[CrossRef]

Burnett, M.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Buttner, A.

A. Buttner, G. Mall, R. Penning, and H. Sachs, “The neuropathology of cocaine abuse,” Leg. Med. (Tokyo) 5, S240-S242 (2003).
[CrossRef]

Camargo, E. E.

G. D. Pearlson, P. J. Jeffery, G. J. Harris, C. A. Ross, M. W. Fischman, and E. E. Camargo, “Correlation of acute cocaine-induced changes in local cerebral blood flow with subjective effects,” Am. J. Psychiatry 150, 495-497 (1993).
[PubMed]

Campbell, T.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Cascella, N. G.

E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990).
[CrossRef] [PubMed]

Charbonné, R.

G. Bonvento, R. Charbonné, J. L. Corrèze, J. Borredon, J. Seylaz, and P. Lacombe, “Is alpha-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research?” Brain Res. 665, 213-221 (1994).
[CrossRef] [PubMed]

Cohen 1, B. M.

M. J. Kaufman, J. M. Levin, L. C. Maas, S. L. Rose, S. E. Lukas, J. H. Mendelson, B. M. Cohen 1, and P. F. Renshaw, “Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study,” Psychopharmacology 138, 76-81 (1998).
[CrossRef] [PubMed]

Corrèze, J. L.

G. Bonvento, R. Charbonné, J. L. Corrèze, J. Borredon, J. Seylaz, and P. Lacombe, “Is alpha-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research?” Brain Res. 665, 213-221 (1994).
[CrossRef] [PubMed]

Dale, A. M.

A. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-289 (2005).
[CrossRef] [PubMed]

Dannals, R. F.

E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990).
[CrossRef] [PubMed]

Delivoria-Papadopoulos, M.

M. Yonetani, N. Lajevardi, A. Pastuszko, and M. Delivoria-Papadopoulos, “Dopamine, blood flow and oxygen pressure in brain of newborn piglets,” Biochem. Med. Metabol. Biol. 51, 91-97 (1994).
[CrossRef]

Detre, J.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Devor, A.

A. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-289 (2005).
[CrossRef] [PubMed]

Diez-Tejedor, E.

N. E. Martinez, E. Diez-Tejedor, and A. Frank, “Vasospasm/thrombus in cerebral ischemia related to cocaine abuse,” Stroke 27, 147-148 (1996).
[PubMed]

Drexler, W.

Du, C.

Z. Luo, Z. Wang, Z. Yuan, C. Du, and Y. Pan, “Optical coherence Doppler tomography quantifies laser speckle contrast imaging for blood flow imaging in the rat cerebral cortex,” Opt. Lett. 33, 1156-1158 (2008).
[CrossRef] [PubMed]

C. Du, M. Yu, N. D. Volkow, A. P. Koretsky, J. S. Fowler, and H. Benveniste, “Cocaine increases intracellular concentration of calcium in brain independently of its cerebrovascular effects,” J. Neurosci. 26, 11522-11531, (2006).
[CrossRef] [PubMed]

C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, “Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence,” J. Cereb. Blood Flow Metab. 25, 1078-1092 (2005).
[CrossRef] [PubMed]

Dunn, A.

A. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-289 (2005).
[CrossRef] [PubMed]

Duong, T. Q.

K. F. Schmidt, M. Febo, Q. Shen, F. Luo, K. M. Sicard, C. F. Ferris, E. A. Stein, and T. Q. Duong, “Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI,” Psychopharmacology 185, 479-486 (2006).
[PubMed]

Durduran, T.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Febo, M.

K. F. Schmidt, M. Febo, Q. Shen, F. Luo, K. M. Sicard, C. F. Ferris, E. A. Stein, and T. Q. Duong, “Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI,” Psychopharmacology 185, 479-486 (2006).
[PubMed]

Fercher, A.

Ferris, C. F.

K. F. Schmidt, M. Febo, Q. Shen, F. Luo, K. M. Sicard, C. F. Ferris, E. A. Stein, and T. Q. Duong, “Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI,” Psychopharmacology 185, 479-486 (2006).
[PubMed]

Fischman, M. W.

G. D. Pearlson, P. J. Jeffery, G. J. Harris, C. A. Ross, M. W. Fischman, and E. E. Camargo, “Correlation of acute cocaine-induced changes in local cerebral blood flow with subjective effects,” Am. J. Psychiatry 150, 495-497 (1993).
[PubMed]

Foley, M.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Fowler, J. S.

C. Du, M. Yu, N. D. Volkow, A. P. Koretsky, J. S. Fowler, and H. Benveniste, “Cocaine increases intracellular concentration of calcium in brain independently of its cerebrovascular effects,” J. Neurosci. 26, 11522-11531, (2006).
[CrossRef] [PubMed]

Frank, A.

N. E. Martinez, E. Diez-Tejedor, and A. Frank, “Vasospasm/thrombus in cerebral ischemia related to cocaine abuse,” Stroke 27, 147-148 (1996).
[PubMed]

Frietsch, T.

C. Lenz, T. Frietsch, C. Futterer, A. Rebel, K. van Ackern, W. Kuschinsky, and K. F. Waschke, “Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane,” Anesthesiology 91, 1720-1723 (1999).
[CrossRef] [PubMed]

Fujii, A.

M. R. Stankovic, A. Fujii, D. Maulik, D. Kirby, and P. G. Stubblefield, “Optical brain monitoring of the cerebrovascular effects induced by acute cocaine exposure in neonatal pigs,” J. Maternal-Fetal Investig. 8, 108-112 (1998).

Fukuda, M.

K. Masamoto, T. Kim, M. Fukuda, P. Wang, and S. G. Kim, “Relationship between neural, vascular and BOLD signals in isoflurane-anesthetized rat somatosensory cortex,” Cereb. Cortex 17, 942-950 (2007).
[CrossRef]

Furuya, D.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Futterer, C.

C. Lenz, T. Frietsch, C. Futterer, A. Rebel, K. van Ackern, W. Kuschinsky, and K. F. Waschke, “Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane,” Anesthesiology 91, 1720-1723 (1999).
[CrossRef] [PubMed]

Gastfriend, D.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Gleason, C. A.

C. A. Gleason and R. J. Traystman, “Cerebral responses to maternal cocaine injection in immature fetal sheep,” Pediatr. Res. 38, 943-948 (1995).
[CrossRef] [PubMed]

H. Iida, C. A. Gleason, T. P. O'Brien, and R. J. Traystman, “Fetal response to acute fetal cocaine injection in sheep,” Am. J. Physiol. 267, H1968-H1975 (1994).
[PubMed]

Gollub, R. L.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Goplerud, J. M.

E. K. Anday, R. Lien, J. M. Goplerud, D. C. Kurth, and L. M. Shaw, “Pharmacokinetics and effect of cocaine on cerebral blood flow in the newborn,” Dev. Pharmacol. Ther. 20, 35-44 (1993).
[PubMed]

Grayson, R.

E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990).
[CrossRef] [PubMed]

Gruber, A.

Guimaraes, A.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Hanson, S.

Harris, G. J.

G. D. Pearlson, P. J. Jeffery, G. J. Harris, C. A. Ross, M. W. Fischman, and E. E. Camargo, “Correlation of acute cocaine-induced changes in local cerebral blood flow with subjective effects,” Am. J. Psychiatry 150, 495-497 (1993).
[PubMed]

Herning, R.

E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990).
[CrossRef] [PubMed]

Hurst, S.

Hyman, S. E.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Iida, H.

H. Iida, C. A. Gleason, T. P. O'Brien, and R. J. Traystman, “Fetal response to acute fetal cocaine injection in sheep,” Am. J. Physiol. 267, H1968-H1975 (1994).
[PubMed]

Izrailtyan, I.

C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, “Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence,” J. Cereb. Blood Flow Metab. 25, 1078-1092 (2005).
[CrossRef] [PubMed]

Jacques, S.

Jaffe, J. H.

E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990).
[CrossRef] [PubMed]

Jeffery, P. J.

G. D. Pearlson, P. J. Jeffery, G. J. Harris, C. A. Ross, M. W. Fischman, and E. E. Camargo, “Correlation of acute cocaine-induced changes in local cerebral blood flow with subjective effects,” Am. J. Psychiatry 150, 495-497 (1993).
[PubMed]

Kantor, H.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Kaufman, M. J.

M. J. Kaufman, J. M. Levin, L. C. Maas, S. L. Rose, S. E. Lukas, J. H. Mendelson, B. M. Cohen 1, and P. F. Renshaw, “Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study,” Psychopharmacology 138, 76-81 (1998).
[CrossRef] [PubMed]

Keifer-Goodman, J.

T. Maekawa, C. Tommasino, H. M. Shapiro, J. Keifer-Goodman, and R. W. Kohlenberger, “Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat,” Anesthesiology 65, 144-151 (1986).
[CrossRef] [PubMed]

Kennedy, D.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Kim, S. G.

K. Masamoto, T. Kim, M. Fukuda, P. Wang, and S. G. Kim, “Relationship between neural, vascular and BOLD signals in isoflurane-anesthetized rat somatosensory cortex,” Cereb. Cortex 17, 942-950 (2007).
[CrossRef]

Kim, T.

K. Masamoto, T. Kim, M. Fukuda, P. Wang, and S. G. Kim, “Relationship between neural, vascular and BOLD signals in isoflurane-anesthetized rat somatosensory cortex,” Cereb. Cortex 17, 942-950 (2007).
[CrossRef]

Kirby, D.

M. R. Stankovic, A. Fujii, D. Maulik, D. Kirby, and P. G. Stubblefield, “Optical brain monitoring of the cerebrovascular effects induced by acute cocaine exposure in neonatal pigs,” J. Maternal-Fetal Investig. 8, 108-112 (1998).

Kohlenberger, R. W.

T. Maekawa, C. Tommasino, H. M. Shapiro, J. Keifer-Goodman, and R. W. Kohlenberger, “Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat,” Anesthesiology 65, 144-151 (1986).
[CrossRef] [PubMed]

Koretsky, A. P.

C. Du, M. Yu, N. D. Volkow, A. P. Koretsky, J. S. Fowler, and H. Benveniste, “Cocaine increases intracellular concentration of calcium in brain independently of its cerebrovascular effects,” J. Neurosci. 26, 11522-11531, (2006).
[CrossRef] [PubMed]

C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, “Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence,” J. Cereb. Blood Flow Metab. 25, 1078-1092 (2005).
[CrossRef] [PubMed]

Kosofsky, B. E.

J. J. Marota, J. B. Mandeville, R. M. Weisskoff, M. A. Moskowitz, B. R. Rosen, and B. E. Kosofsky, “Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in rat,” NeuroImage 11, 13-23 (2000).
[CrossRef] [PubMed]

Kosten, T. R.

E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996).
[CrossRef] [PubMed]

Kurth, D. C.

E. K. Anday, R. Lien, J. M. Goplerud, D. C. Kurth, and L. M. Shaw, “Pharmacokinetics and effect of cocaine on cerebral blood flow in the newborn,” Dev. Pharmacol. Ther. 20, 35-44 (1993).
[PubMed]

Kuschinsky, W.

C. Lenz, T. Frietsch, C. Futterer, A. Rebel, K. van Ackern, W. Kuschinsky, and K. F. Waschke, “Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane,” Anesthesiology 91, 1720-1723 (1999).
[CrossRef] [PubMed]

Lacombe, P.

G. Bonvento, R. Charbonné, J. L. Corrèze, J. Borredon, J. Seylaz, and P. Lacombe, “Is alpha-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research?” Brain Res. 665, 213-221 (1994).
[CrossRef] [PubMed]

Lajevardi, N.

M. Yonetani, N. Lajevardi, A. Pastuszko, and M. Delivoria-Papadopoulos, “Dopamine, blood flow and oxygen pressure in brain of newborn piglets,” Biochem. Med. Metabol. Biol. 51, 91-97 (1994).
[CrossRef]

Leitgeb, R.

Lenz, C.

C. Lenz, T. Frietsch, C. Futterer, A. Rebel, K. van Ackern, W. Kuschinsky, and K. F. Waschke, “Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane,” Anesthesiology 91, 1720-1723 (1999).
[CrossRef] [PubMed]

Levin, J. M.

M. J. Kaufman, J. M. Levin, L. C. Maas, S. L. Rose, S. E. Lukas, J. H. Mendelson, B. M. Cohen 1, and P. F. Renshaw, “Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study,” Psychopharmacology 138, 76-81 (1998).
[CrossRef] [PubMed]

Li, S. J.

F. Luo, G. Wu, Z. Li, and S. J. Li, “Characterization of effects of mean arterial blood pressure induced by cocaine and cocaine methiodide on BOLD signals in rat brain,” Magn. Reson. Med. 49, 264-270 (2003).
[CrossRef] [PubMed]

Li, Z.

F. Luo, G. Wu, Z. Li, and S. J. Li, “Characterization of effects of mean arterial blood pressure induced by cocaine and cocaine methiodide on BOLD signals in rat brain,” Magn. Reson. Med. 49, 264-270 (2003).
[CrossRef] [PubMed]

Lien, R.

E. K. Anday, R. Lien, J. M. Goplerud, D. C. Kurth, and L. M. Shaw, “Pharmacokinetics and effect of cocaine on cerebral blood flow in the newborn,” Dev. Pharmacol. Ther. 20, 35-44 (1993).
[PubMed]

Links, J. M.

E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990).
[CrossRef] [PubMed]

London, E. D.

E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990).
[CrossRef] [PubMed]

Lukas, S. E.

M. J. Kaufman, J. M. Levin, L. C. Maas, S. L. Rose, S. E. Lukas, J. H. Mendelson, B. M. Cohen 1, and P. F. Renshaw, “Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study,” Psychopharmacology 138, 76-81 (1998).
[CrossRef] [PubMed]

Luo, F.

K. F. Schmidt, M. Febo, Q. Shen, F. Luo, K. M. Sicard, C. F. Ferris, E. A. Stein, and T. Q. Duong, “Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI,” Psychopharmacology 185, 479-486 (2006).
[PubMed]

F. Luo, G. Wu, Z. Li, and S. J. Li, “Characterization of effects of mean arterial blood pressure induced by cocaine and cocaine methiodide on BOLD signals in rat brain,” Magn. Reson. Med. 49, 264-270 (2003).
[CrossRef] [PubMed]

Luo, Z.

Ma, Z.

Maas, L. C.

M. J. Kaufman, J. M. Levin, L. C. Maas, S. L. Rose, S. E. Lukas, J. H. Mendelson, B. M. Cohen 1, and P. F. Renshaw, “Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study,” Psychopharmacology 138, 76-81 (1998).
[CrossRef] [PubMed]

Maekawa, T.

T. Maekawa, C. Tommasino, H. M. Shapiro, J. Keifer-Goodman, and R. W. Kohlenberger, “Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat,” Anesthesiology 65, 144-151 (1986).
[CrossRef] [PubMed]

Makris, N.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Mall, G.

A. Buttner, G. Mall, R. Penning, and H. Sachs, “The neuropathology of cocaine abuse,” Leg. Med. (Tokyo) 5, S240-S242 (2003).
[CrossRef]

Mandeville, J. B.

J. J. Marota, J. B. Mandeville, R. M. Weisskoff, M. A. Moskowitz, B. R. Rosen, and B. E. Kosofsky, “Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in rat,” NeuroImage 11, 13-23 (2000).
[CrossRef] [PubMed]

Marota, J. J.

J. J. Marota, J. B. Mandeville, R. M. Weisskoff, M. A. Moskowitz, B. R. Rosen, and B. E. Kosofsky, “Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in rat,” NeuroImage 11, 13-23 (2000).
[CrossRef] [PubMed]

Martinez, N. E.

N. E. Martinez, E. Diez-Tejedor, and A. Frank, “Vasospasm/thrombus in cerebral ischemia related to cocaine abuse,” Stroke 27, 147-148 (1996).
[PubMed]

Masamoto, K.

K. Masamoto, T. Kim, M. Fukuda, P. Wang, and S. G. Kim, “Relationship between neural, vascular and BOLD signals in isoflurane-anesthetized rat somatosensory cortex,” Cereb. Cortex 17, 942-950 (2007).
[CrossRef]

Mathe, R. T.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Maulik, D.

M. R. Stankovic, A. Fujii, D. Maulik, D. Kirby, and P. G. Stubblefield, “Optical brain monitoring of the cerebrovascular effects induced by acute cocaine exposure in neonatal pigs,” J. Maternal-Fetal Investig. 8, 108-112 (1998).

Mendelson, J. H.

M. J. Kaufman, J. M. Levin, L. C. Maas, S. L. Rose, S. E. Lukas, J. H. Mendelson, B. M. Cohen 1, and P. F. Renshaw, “Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study,” Psychopharmacology 138, 76-81 (1998).
[CrossRef] [PubMed]

Monito, C. L.

M. L. Albuquerque, C. L. Monito, L. Shaw, and E. K. Anday, “Ethanol, morphine and barbiturate alter the hemodynamic and cerebral response to cocaine in newborn pigs,” Biol. Neonate 67, 432-440 (1995).
[CrossRef] [PubMed]

Moskowitz, M. A.

J. J. Marota, J. B. Mandeville, R. M. Weisskoff, M. A. Moskowitz, B. R. Rosen, and B. E. Kosofsky, “Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in rat,” NeuroImage 11, 13-23 (2000).
[CrossRef] [PubMed]

O'Brien, T. P.

H. Iida, C. A. Gleason, T. P. O'Brien, and R. J. Traystman, “Fetal response to acute fetal cocaine injection in sheep,” Am. J. Physiol. 267, H1968-H1975 (1994).
[PubMed]

Pan, Y.

Pastuszko, A.

M. Yonetani, N. Lajevardi, A. Pastuszko, and M. Delivoria-Papadopoulos, “Dopamine, blood flow and oxygen pressure in brain of newborn piglets,” Biochem. Med. Metabol. Biol. 51, 91-97 (1994).
[CrossRef]

Pearlson, G. D.

G. D. Pearlson, P. J. Jeffery, G. J. Harris, C. A. Ross, M. W. Fischman, and E. E. Camargo, “Correlation of acute cocaine-induced changes in local cerebral blood flow with subjective effects,” Am. J. Psychiatry 150, 495-497 (1993).
[PubMed]

Penning, R.

A. Buttner, G. Mall, R. Penning, and H. Sachs, “The neuropathology of cocaine abuse,” Leg. Med. (Tokyo) 5, S240-S242 (2003).
[CrossRef]

Pfau, S. E.

E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996).
[CrossRef] [PubMed]

Phillips, R. L.

E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990).
[CrossRef] [PubMed]

Rebel, A.

C. Lenz, T. Frietsch, C. Futterer, A. Rebel, K. van Ackern, W. Kuschinsky, and K. F. Waschke, “Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane,” Anesthesiology 91, 1720-1723 (1999).
[CrossRef] [PubMed]

Renshaw, P. F.

M. J. Kaufman, J. M. Levin, L. C. Maas, S. L. Rose, S. E. Lukas, J. H. Mendelson, B. M. Cohen 1, and P. F. Renshaw, “Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study,” Psychopharmacology 138, 76-81 (1998).
[CrossRef] [PubMed]

Riorden, J.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Rose, S. L.

M. J. Kaufman, J. M. Levin, L. C. Maas, S. L. Rose, S. E. Lukas, J. H. Mendelson, B. M. Cohen 1, and P. F. Renshaw, “Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study,” Psychopharmacology 138, 76-81 (1998).
[CrossRef] [PubMed]

Rosen, B.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Rosen, B. R.

J. J. Marota, J. B. Mandeville, R. M. Weisskoff, M. A. Moskowitz, B. R. Rosen, and B. E. Kosofsky, “Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in rat,” NeuroImage 11, 13-23 (2000).
[CrossRef] [PubMed]

Rosen, M. I.

E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996).
[CrossRef] [PubMed]

Ross, C. A.

G. D. Pearlson, P. J. Jeffery, G. J. Harris, C. A. Ross, M. W. Fischman, and E. E. Camargo, “Correlation of acute cocaine-induced changes in local cerebral blood flow with subjective effects,” Am. J. Psychiatry 150, 495-497 (1993).
[PubMed]

Sachs, H.

A. Buttner, G. Mall, R. Penning, and H. Sachs, “The neuropathology of cocaine abuse,” Leg. Med. (Tokyo) 5, S240-S242 (2003).
[CrossRef]

Schmetterer, L.

Schmidt, K. F.

K. F. Schmidt, M. Febo, Q. Shen, F. Luo, K. M. Sicard, C. F. Ferris, E. A. Stein, and T. Q. Duong, “Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI,” Psychopharmacology 185, 479-486 (2006).
[PubMed]

Seylaz, J.

G. Bonvento, R. Charbonné, J. L. Corrèze, J. Borredon, J. Seylaz, and P. Lacombe, “Is alpha-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research?” Brain Res. 665, 213-221 (1994).
[CrossRef] [PubMed]

Shapiro, H. M.

T. Maekawa, C. Tommasino, H. M. Shapiro, J. Keifer-Goodman, and R. W. Kohlenberger, “Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat,” Anesthesiology 65, 144-151 (1986).
[CrossRef] [PubMed]

Shaw, L.

M. L. Albuquerque, C. L. Monito, L. Shaw, and E. K. Anday, “Ethanol, morphine and barbiturate alter the hemodynamic and cerebral response to cocaine in newborn pigs,” Biol. Neonate 67, 432-440 (1995).
[CrossRef] [PubMed]

Shaw, L. M.

E. K. Anday, R. Lien, J. M. Goplerud, D. C. Kurth, and L. M. Shaw, “Pharmacokinetics and effect of cocaine on cerebral blood flow in the newborn,” Dev. Pharmacol. Ther. 20, 35-44 (1993).
[PubMed]

Shen, Q.

K. F. Schmidt, M. Febo, Q. Shen, F. Luo, K. M. Sicard, C. F. Ferris, E. A. Stein, and T. Q. Duong, “Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI,” Psychopharmacology 185, 479-486 (2006).
[PubMed]

Sicard, K. M.

K. F. Schmidt, M. Febo, Q. Shen, F. Luo, K. M. Sicard, C. F. Ferris, E. A. Stein, and T. Q. Duong, “Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI,” Psychopharmacology 185, 479-486 (2006).
[PubMed]

Smith, E. O.

E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996).
[CrossRef] [PubMed]

Stankovic, M. R.

M. R. Stankovic, A. Fujii, D. Maulik, D. Kirby, and P. G. Stubblefield, “Optical brain monitoring of the cerebrovascular effects induced by acute cocaine exposure in neonatal pigs,” J. Maternal-Fetal Investig. 8, 108-112 (1998).

Stein, E. A.

K. F. Schmidt, M. Febo, Q. Shen, F. Luo, K. M. Sicard, C. F. Ferris, E. A. Stein, and T. Q. Duong, “Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI,” Psychopharmacology 185, 479-486 (2006).
[PubMed]

Stubblefield, P. G.

M. R. Stankovic, A. Fujii, D. Maulik, D. Kirby, and P. G. Stubblefield, “Optical brain monitoring of the cerebrovascular effects induced by acute cocaine exposure in neonatal pigs,” J. Maternal-Fetal Investig. 8, 108-112 (1998).

Sullivan, M. C.

E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996).
[CrossRef] [PubMed]

Tommasino, C.

T. Maekawa, C. Tommasino, H. M. Shapiro, J. Keifer-Goodman, and R. W. Kohlenberger, “Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat,” Anesthesiology 65, 144-151 (1986).
[CrossRef] [PubMed]

Traystman, R. J.

C. A. Gleason and R. J. Traystman, “Cerebral responses to maternal cocaine injection in immature fetal sheep,” Pediatr. Res. 38, 943-948 (1995).
[CrossRef] [PubMed]

H. Iida, C. A. Gleason, T. P. O'Brien, and R. J. Traystman, “Fetal response to acute fetal cocaine injection in sheep,” Am. J. Physiol. 267, H1968-H1975 (1994).
[PubMed]

van Ackern, K.

C. Lenz, T. Frietsch, C. Futterer, A. Rebel, K. van Ackern, W. Kuschinsky, and K. F. Waschke, “Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane,” Anesthesiology 91, 1720-1723 (1999).
[CrossRef] [PubMed]

Vandyck, C. H.

E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996).
[CrossRef] [PubMed]

Volkow, N. D.

C. Du, M. Yu, N. D. Volkow, A. P. Koretsky, J. S. Fowler, and H. Benveniste, “Cocaine increases intracellular concentration of calcium in brain independently of its cerebrovascular effects,” J. Neurosci. 26, 11522-11531, (2006).
[CrossRef] [PubMed]

Wagner, H. N.

E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990).
[CrossRef] [PubMed]

Wallace, E. A.

E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996).
[CrossRef] [PubMed]

Wang, P.

K. Masamoto, T. Kim, M. Fukuda, P. Wang, and S. G. Kim, “Relationship between neural, vascular and BOLD signals in isoflurane-anesthetized rat somatosensory cortex,” Cereb. Cortex 17, 942-950 (2007).
[CrossRef]

Wang, R.

Wang, Z.

Waschke, K. F.

C. Lenz, T. Frietsch, C. Futterer, A. Rebel, K. van Ackern, W. Kuschinsky, and K. F. Waschke, “Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane,” Anesthesiology 91, 1720-1723 (1999).
[CrossRef] [PubMed]

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

Weisskoff, R.

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

Weisskoff, R. M.

J. J. Marota, J. B. Mandeville, R. M. Weisskoff, M. A. Moskowitz, B. R. Rosen, and B. E. Kosofsky, “Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in rat,” NeuroImage 11, 13-23 (2000).
[CrossRef] [PubMed]

Wisniewski, G.

E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996).
[CrossRef] [PubMed]

Wong, D. F.

E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990).
[CrossRef] [PubMed]

Woods, S. W.

E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996).
[CrossRef] [PubMed]

Wu, G.

F. Luo, G. Wu, Z. Li, and S. J. Li, “Characterization of effects of mean arterial blood pressure induced by cocaine and cocaine methiodide on BOLD signals in rat brain,” Magn. Reson. Med. 49, 264-270 (2003).
[CrossRef] [PubMed]

Yodh, A.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Yonetani, M.

M. Yonetani, N. Lajevardi, A. Pastuszko, and M. Delivoria-Papadopoulos, “Dopamine, blood flow and oxygen pressure in brain of newborn piglets,” Biochem. Med. Metabol. Biol. 51, 91-97 (1994).
[CrossRef]

Yu, G.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Yu, M.

C. Du, M. Yu, N. D. Volkow, A. P. Koretsky, J. S. Fowler, and H. Benveniste, “Cocaine increases intracellular concentration of calcium in brain independently of its cerebrovascular effects,” J. Neurosci. 26, 11522-11531, (2006).
[CrossRef] [PubMed]

Yuan, Z.

Zawadzki, R.

Zhou, C.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Zubal, G.

E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996).
[CrossRef] [PubMed]

Am. J. Physiol. (1)

H. Iida, C. A. Gleason, T. P. O'Brien, and R. J. Traystman, “Fetal response to acute fetal cocaine injection in sheep,” Am. J. Physiol. 267, H1968-H1975 (1994).
[PubMed]

Am. J. Psychiatry (1)

G. D. Pearlson, P. J. Jeffery, G. J. Harris, C. A. Ross, M. W. Fischman, and E. E. Camargo, “Correlation of acute cocaine-induced changes in local cerebral blood flow with subjective effects,” Am. J. Psychiatry 150, 495-497 (1993).
[PubMed]

Anesthesiology (2)

T. Maekawa, C. Tommasino, H. M. Shapiro, J. Keifer-Goodman, and R. W. Kohlenberger, “Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat,” Anesthesiology 65, 144-151 (1986).
[CrossRef] [PubMed]

C. Lenz, T. Frietsch, C. Futterer, A. Rebel, K. van Ackern, W. Kuschinsky, and K. F. Waschke, “Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane,” Anesthesiology 91, 1720-1723 (1999).
[CrossRef] [PubMed]

Arch. Gen. Psychiatry (1)

E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990).
[CrossRef] [PubMed]

Biochem. Med. Metabol. Biol. (1)

M. Yonetani, N. Lajevardi, A. Pastuszko, and M. Delivoria-Papadopoulos, “Dopamine, blood flow and oxygen pressure in brain of newborn piglets,” Biochem. Med. Metabol. Biol. 51, 91-97 (1994).
[CrossRef]

Biol. Neonate (1)

M. L. Albuquerque, C. L. Monito, L. Shaw, and E. K. Anday, “Ethanol, morphine and barbiturate alter the hemodynamic and cerebral response to cocaine in newborn pigs,” Biol. Neonate 67, 432-440 (1995).
[CrossRef] [PubMed]

Brain Res. (1)

G. Bonvento, R. Charbonné, J. L. Corrèze, J. Borredon, J. Seylaz, and P. Lacombe, “Is alpha-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research?” Brain Res. 665, 213-221 (1994).
[CrossRef] [PubMed]

Cereb. Cortex (1)

K. Masamoto, T. Kim, M. Fukuda, P. Wang, and S. G. Kim, “Relationship between neural, vascular and BOLD signals in isoflurane-anesthetized rat somatosensory cortex,” Cereb. Cortex 17, 942-950 (2007).
[CrossRef]

Crit. Rev. Neurobiol. (1)

M. T. Bardo, “Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens,” Crit. Rev. Neurobiol. 12, 37-67 (1998).
[PubMed]

Dev. Pharmacol. Ther. (1)

E. K. Anday, R. Lien, J. M. Goplerud, D. C. Kurth, and L. M. Shaw, “Pharmacokinetics and effect of cocaine on cerebral blood flow in the newborn,” Dev. Pharmacol. Ther. 20, 35-44 (1993).
[PubMed]

J. Biomed. Opt. (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

J. Cereb. Blood Flow Metab. (3)

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998).
[CrossRef] [PubMed]

C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, “Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence,” J. Cereb. Blood Flow Metab. 25, 1078-1092 (2005).
[CrossRef] [PubMed]

J. Maternal-Fetal Investig. (1)

M. R. Stankovic, A. Fujii, D. Maulik, D. Kirby, and P. G. Stubblefield, “Optical brain monitoring of the cerebrovascular effects induced by acute cocaine exposure in neonatal pigs,” J. Maternal-Fetal Investig. 8, 108-112 (1998).

J. Neurosci. (1)

C. Du, M. Yu, N. D. Volkow, A. P. Koretsky, J. S. Fowler, and H. Benveniste, “Cocaine increases intracellular concentration of calcium in brain independently of its cerebrovascular effects,” J. Neurosci. 26, 11522-11531, (2006).
[CrossRef] [PubMed]

Leg. Med. (Tokyo) (1)

A. Buttner, G. Mall, R. Penning, and H. Sachs, “The neuropathology of cocaine abuse,” Leg. Med. (Tokyo) 5, S240-S242 (2003).
[CrossRef]

Magn. Reson. Med. (1)

F. Luo, G. Wu, Z. Li, and S. J. Li, “Characterization of effects of mean arterial blood pressure induced by cocaine and cocaine methiodide on BOLD signals in rat brain,” Magn. Reson. Med. 49, 264-270 (2003).
[CrossRef] [PubMed]

NeuroImage (2)

J. J. Marota, J. B. Mandeville, R. M. Weisskoff, M. A. Moskowitz, B. R. Rosen, and B. E. Kosofsky, “Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in rat,” NeuroImage 11, 13-23 (2000).
[CrossRef] [PubMed]

A. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-289 (2005).
[CrossRef] [PubMed]

Neurol. Clin. (1)

J. C. Brust, “Vasculitis owing to substance abuse,” Neurol. Clin. 15, 945-957 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Pediatr. Res. (1)

C. A. Gleason and R. J. Traystman, “Cerebral responses to maternal cocaine injection in immature fetal sheep,” Pediatr. Res. 38, 943-948 (1995).
[CrossRef] [PubMed]

Physiol. Meas. (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 2001, R35-R66.
[CrossRef]

Psychopharmacology (3)

E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996).
[CrossRef] [PubMed]

K. F. Schmidt, M. Febo, Q. Shen, F. Luo, K. M. Sicard, C. F. Ferris, E. A. Stein, and T. Q. Duong, “Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI,” Psychopharmacology 185, 479-486 (2006).
[PubMed]

M. J. Kaufman, J. M. Levin, L. C. Maas, S. L. Rose, S. E. Lukas, J. H. Mendelson, B. M. Cohen 1, and P. F. Renshaw, “Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study,” Psychopharmacology 138, 76-81 (1998).
[CrossRef] [PubMed]

Stroke (1)

N. E. Martinez, E. Diez-Tejedor, and A. Frank, “Vasospasm/thrombus in cerebral ischemia related to cocaine abuse,” Stroke 27, 147-148 (1996).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sketch of the dual-imaging setup combining SDOCT and LSCI for quantitative blood flow imaging. LD, diode laser; BBS, broadband source; CM, fiber optic collimator; G, servo mirror; L1, lens.

Fig. 2
Fig. 2

Simultaneous LSCI and SDOCT imaging for blood flow quantification. (a) en face LSCI image of flow speed index, (b) LSCI profiles of flow index (AU, relative measurement) across a vessel section highlighted (labeled as x1–x2) in panel (a) before and after cocaine challenge, (c) quantitative cross-sectional SDOCT flow profiles across the same section x1–x2 prior to and post cocaine administration, and (d) calibration curve derived from the least squares fit ( r 2 = 0.96 ) between panels (b), (c) to quantify LSCI flow index.

Fig. 3
Fig. 3

Cocaine-induced cortical CBF changes under α-chloralose anesthesia (upper panels) and isoflurane anesthesia (bottom panels). (a), (d) White-light images of the cranial window, (b), (e) quantified baseline cortical CBF images prior to cocaine challenge, and (c), (e) t-value mapping superimposed on the quantified cortical CBF images.

Fig. 4
Fig. 4

Measured spatiotemporal dynamics of cortical LCBF in response to cocaine challenge (IV injection at t = 0 s ) in a rat under α-chloralose anesthesia. (a) Cocaine-evoked cortical CBF changes with time acquired from a veinule (blue curve) and an avascular region (red curve) and (b) quantified time-lapse cortical CBF maps, each averaged over the time frames within the dotted time grids.

Fig. 5
Fig. 5

Measured spatiotemporal dynamics of cortical LCBF in response to cocaine challenge (IV injection at t = 0 s ) in a rat under isoflurane anesthesia. (a) Cocaine-evoked cortical CBF changes with time acquired from two arterioles (art1 and art2, red and magenta curves), a veinule (black curve) and an avascular region (yellow curve) and (b) quantified time-lapse cortical CBF maps, each averaged over the time frames within the dotted time grids.

Fig. 6
Fig. 6

(a), (d) Cocaine-induced MABP and relative changes of cortical CBF in both (b), (e) vascular and (c), (f) avascular region with time average for rats under α-chloralose anesthesia (left panels) and isoflurane anesthesia (right panels).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

K ( x , y , t ) = σ ( x , y , t ) I ( x , y , t ) = τ C ( x , y , t ) 2 T [ 1 exp ( 2 T τ C ( x , y , t ) ) ] ,
τ C = 1 a k v 2 1 / 2
K ( x , y ) = 1 e 2 T k a v 2 ( x , y ) 1 / 2 2 T k a v 2 ( x , y ) 1 / 2 ,
v x ( z ) = tan 1 { Im [ I x ( z , τ L ) ] / Re [ I x ( z , τ L ) ] } tan 1 { Im [ I x ( z ) ] / Re [ I x ( z ) ] } 2 k τ L cos θ .
t ( x , y ) = ν c t ( x , y ) ν c t 0 ( x , y ) S t 2 · ( n t 1 ) + S t 0 2 · ( n t 0 1 ) ( n t 1 ) + ( n t 0 1 ) ( 1 n t + 1 n t 0 ) ,

Metrics