Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Near-infrared spectral imaging of the female breast for quantitative oximetry in optical mammography

Not Accessible

Your library or personal account may give you access

Abstract

We present a hybrid continuous-wave, frequency-domain instrument for near-infrared spectral imaging of the female breast based on a tandem, planar scanning of one illumination optical fiber and one collection optical fiber configured in a transmission geometry. The spatial sampling rate of 25  points/cm2 is increased to 400 points/cm2 by postprocessing the data with a 2D cubic spline interpolation. We then apply a previously developed spatial second-derivative algorithm to an edge-corrected intensity image (N-image) to enhance the visibility and resolution of optical inhomogeneities in breast tissue such as blood vessels and tumors. The spectral data at each image pixel consist of 515-point spectra over the 650900nm wavelength range, thus featuring a spectral density of two data points per nanometer. We process the measured spectra with a paired-wavelength spectral analysis method to quantify the oxygen saturation of detected optical inhomogeneities, under the assumption that they feature a locally higher hemoglobin concentration. Our initial measurements on two healthy human subjects have generated high-resolution optical mammograms displaying a network of blood vessels with values of hemoglobin saturation typically falling within the 60%–95% range, which is physiologically reasonable. This approach to spectral imaging and oximetry of the breast has the potential to efficiently exploit the high intrinsic contrast provided by hemoglobin in breast tissue and to contribute a useful tool in the detection, diagnosis, and monitoring of breast pathologies.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Three-dimensional time-resolved optical mammography of the uncompressed breast

Louise C. Enfield, Adam P. Gibson, Nicholas L. Everdell, David T. Delpy, Martin Schweiger, Simon R. Arridge, Caroline Richardson, Mohammad Keshtgar, Michael Douek, and Jeremy C. Hebden
Appl. Opt. 46(17) 3628-3638 (2007)

Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors

Dirk Grosenick, K. Thomas Moesta, Heidrun Wabnitz, Jörg Mucke, Christian Stroszczynski, Rainer Macdonald, Peter M. Schlag, and Herbert Rinneberg
Appl. Opt. 42(16) 3170-3186 (2003)

Supplementary Material (1)

Media 1: MOV (9164 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved