Abstract

We present a hybrid continuous-wave, frequency-domain instrument for near-infrared spectral imaging of the female breast based on a tandem, planar scanning of one illumination optical fiber and one collection optical fiber configured in a transmission geometry. The spatial sampling rate of 25  points/cm2 is increased to 400 points/cm2 by postprocessing the data with a 2D cubic spline interpolation. We then apply a previously developed spatial second-derivative algorithm to an edge-corrected intensity image (N-image) to enhance the visibility and resolution of optical inhomogeneities in breast tissue such as blood vessels and tumors. The spectral data at each image pixel consist of 515-point spectra over the 650900nm wavelength range, thus featuring a spectral density of two data points per nanometer. We process the measured spectra with a paired-wavelength spectral analysis method to quantify the oxygen saturation of detected optical inhomogeneities, under the assumption that they feature a locally higher hemoglobin concentration. Our initial measurements on two healthy human subjects have generated high-resolution optical mammograms displaying a network of blood vessels with values of hemoglobin saturation typically falling within the 60%–95% range, which is physiologically reasonable. This approach to spectral imaging and oximetry of the breast has the potential to efficiently exploit the high intrinsic contrast provided by hemoglobin in breast tissue and to contribute a useful tool in the detection, diagnosis, and monitoring of breast pathologies.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun, “Cancer statistics, 2008,” CA Cancer J. Clin. 58, 71-96 (2008).
    [CrossRef] [PubMed]
  2. M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721-727 (1929).
  3. D. J. Watmough, “A light torch for the transillumination of female breast tissues,” Br. J. Radiol. 55, 142-146 (1982).
    [CrossRef] [PubMed]
  4. G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, B.-M. Hung, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70-74 (1984).
    [CrossRef] [PubMed]
  5. B. Ohlsson, J. Gundersen, and D. M. Nilsson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701-706 (1980).
    [CrossRef] [PubMed]
  6. V. Marshall, D. C. Williams, and K. D. Smith, “Diaphanography as a means of detecting breast cancer,” Radiology 150, 339-343 (1984).
  7. H. Wallberg, A. Alveryd, K. Nasiell, P. Sundelin, U. Bergvall, and S. Troell, “Diaphanography in benign breast disorders. Correlation with clinical examination, mammography, cytology and histology,” Acta Radiol. Diagn. 26, 129-136 (1985).
  8. B. Monsees, J. M. Destouet, and W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463-465 (1987).
    [PubMed]
  9. G. E. Geslien, J. R. Fisher, and C. DeLaney, “Transillumination in breast cancer detection: screening failures and potential,” AJR Am. J. Roentgenol. 144, 619-622 (1985).
    [PubMed]
  10. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of optical properties,” Appl. Opt. 28, 2331-2336 (1989).
    [CrossRef] [PubMed]
  11. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
    [CrossRef] [PubMed]
  12. D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463-1466 (1993).
    [CrossRef] [PubMed]
  13. B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423-3427 (1993).
    [CrossRef] [PubMed]
  14. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
    [CrossRef] [PubMed]
  15. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1, 391-403 (1997).
    [CrossRef] [PubMed]
  16. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency-domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500-2513 (2000).
    [CrossRef]
  17. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
    [CrossRef] [PubMed]
  18. T. Dierkes, D. Grosenick, K. T. Moesta, M. Moller, P. M. Schlag, H. Rinneberg, and S. Arridge, “Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data,” Phys. Med. Biol. 50, 2519-2542(2005).
    [CrossRef] [PubMed]
  19. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006).
    [CrossRef] [PubMed]
  20. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002).
    [CrossRef] [PubMed]
  21. R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018-3036 (2001).
    [CrossRef]
  22. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927-2943(1999).
    [CrossRef]
  23. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
    [CrossRef] [PubMed]
  24. J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, “Ten-year risk of false positive screening mammograms and clinical breast examinations ,” N. Engl. J. Med. 338, 1089-1096 (1998).
  25. C. L. Christiansen, F. Wang, M. B. Barton, W. Kreuter, J. G. Elmore, A. E. Gelfand, and S. W. Fletcher, “Predicting the cumulative risk of false-positive mammograms,” J. Natl. Cancer Inst. 92, 1657-1666 (2000).
    [CrossRef] [PubMed]
  26. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443-2451 (2008).
    [CrossRef] [PubMed]
  27. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135-145 (2003).
    [CrossRef] [PubMed]
  28. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
    [CrossRef] [PubMed]
  29. G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
    [CrossRef] [PubMed]
  30. E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
    [CrossRef] [PubMed]
  31. A. Bassi, L. Spinelli, C. D'Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt. 11054035 (2006).
    [CrossRef] [PubMed]
  32. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170-3186 (2003).
    [CrossRef] [PubMed]
  33. B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279-285 (2005).
    [CrossRef]
  34. Y. Painchaud, S. Chatigny, M. Morin, M. L. Vernon, and P. Beaudry, “Dual-spatial integration for longitudinal localization of inclusions in turbid media,” Appl. Opt. 39, 4730-4732(2000).
    [CrossRef]
  35. D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evalutaion of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).
    [CrossRef]
  36. V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
    [CrossRef] [PubMed]
  37. E. L. Heffer and S. Fantini, “Quantitative oximetry of breast tumors: a near-infrared method that identifies two optimal wavelengths for each tumor,” Appl. Opt. 41, 3827-3839 (2002).
    [CrossRef] [PubMed]
  38. S. Fantini, E. L. Heffer, M. A. Franceschini, L. Gotz, A. Heinig, S. Heywang-Kobrunner, O. Schutz, and H. Siebold, “Optical mammography with intensity-modulated light,” in Inter-institute Workshop on in Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, 2000), pp. 111-117.
  39. S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128-2138 (1994).
    [CrossRef]
  40. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949-957 (1997).
    [CrossRef] [PubMed]
  41. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498-6507 (2000).
    [CrossRef]
  42. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996).
    [CrossRef] [PubMed]
  43. E. H. W. Meijering, “Spline interpolation in medical imaging: comparison with other convolution-based approaches,” in Signal Processing X: Theories and Applications, M. Gabbouj and P. Kuosmanen, ed. (The European Association for Signal Processing, 2000), pp. 1989-1996.
  44. S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
    [PubMed]
  45. N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007).
    [CrossRef] [PubMed]
  46. S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal. 9, 1143-1156 (2007).
    [CrossRef] [PubMed]
  47. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
    [CrossRef] [PubMed]
  48. V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41-46 (2001).
    [CrossRef] [PubMed]
  49. N. Liu, A. Sassaroli, and S. Fantini, “Two-dimensional phased arrays of sources and detectors for depth discrimination in diffuse optical imaging,” J. Biomed. Opt. 10051801(2005).
    [CrossRef] [PubMed]
  50. N. Liu, A. Sassaroli, M. A. Zucker, and S. Fantini, “Three-element phased-array approach to diffuse optical imaging based on postprocessing of continuous-wave data,” Opt. Lett. 30, 281-283 (2005).
    [CrossRef] [PubMed]
  51. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 4014-4019 (2007).
    [CrossRef] [PubMed]
  52. J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13 (4), 041305 (2008).
    [CrossRef] [PubMed]

2008 (3)

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun, “Cancer statistics, 2008,” CA Cancer J. Clin. 58, 71-96 (2008).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443-2451 (2008).
[CrossRef] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13 (4), 041305 (2008).
[CrossRef] [PubMed]

2007 (5)

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 4014-4019 (2007).
[CrossRef] [PubMed]

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evalutaion of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).
[CrossRef]

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal. 9, 1143-1156 (2007).
[CrossRef] [PubMed]

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Bassi, L. Spinelli, C. D'Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt. 11054035 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006).
[CrossRef] [PubMed]

2005 (6)

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

T. Dierkes, D. Grosenick, K. T. Moesta, M. Moller, P. M. Schlag, H. Rinneberg, and S. Arridge, “Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data,” Phys. Med. Biol. 50, 2519-2542(2005).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279-285 (2005).
[CrossRef]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

N. Liu, A. Sassaroli, and S. Fantini, “Two-dimensional phased arrays of sources and detectors for depth discrimination in diffuse optical imaging,” J. Biomed. Opt. 10051801(2005).
[CrossRef] [PubMed]

N. Liu, A. Sassaroli, M. A. Zucker, and S. Fantini, “Three-element phased-array approach to diffuse optical imaging based on postprocessing of continuous-wave data,” Opt. Lett. 30, 281-283 (2005).
[CrossRef] [PubMed]

2004 (2)

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (3)

E. L. Heffer and S. Fantini, “Quantitative oximetry of breast tumors: a near-infrared method that identifies two optimal wavelengths for each tumor,” Appl. Opt. 41, 3827-3839 (2002).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002).
[CrossRef] [PubMed]

2001 (2)

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018-3036 (2001).
[CrossRef]

V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41-46 (2001).
[CrossRef] [PubMed]

2000 (6)

E. H. W. Meijering, “Spline interpolation in medical imaging: comparison with other convolution-based approaches,” in Signal Processing X: Theories and Applications, M. Gabbouj and P. Kuosmanen, ed. (The European Association for Signal Processing, 2000), pp. 1989-1996.

S. Fantini, E. L. Heffer, M. A. Franceschini, L. Gotz, A. Heinig, S. Heywang-Kobrunner, O. Schutz, and H. Siebold, “Optical mammography with intensity-modulated light,” in Inter-institute Workshop on in Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, 2000), pp. 111-117.

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498-6507 (2000).
[CrossRef]

C. L. Christiansen, F. Wang, M. B. Barton, W. Kreuter, J. G. Elmore, A. E. Gelfand, and S. W. Fletcher, “Predicting the cumulative risk of false-positive mammograms,” J. Natl. Cancer Inst. 92, 1657-1666 (2000).
[CrossRef] [PubMed]

Y. Painchaud, S. Chatigny, M. Morin, M. L. Vernon, and P. Beaudry, “Dual-spatial integration for longitudinal localization of inclusions in turbid media,” Appl. Opt. 39, 4730-4732(2000).
[CrossRef]

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency-domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500-2513 (2000).
[CrossRef]

1999 (1)

1998 (1)

J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, “Ten-year risk of false positive screening mammograms and clinical breast examinations ,” N. Engl. J. Med. 338, 1089-1096 (1998).

1997 (4)

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1, 391-403 (1997).
[CrossRef] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949-957 (1997).
[CrossRef] [PubMed]

1996 (1)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

1994 (1)

1993 (2)

D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463-1466 (1993).
[CrossRef] [PubMed]

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423-3427 (1993).
[CrossRef] [PubMed]

1989 (1)

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

1987 (1)

B. Monsees, J. M. Destouet, and W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463-465 (1987).
[PubMed]

1985 (2)

G. E. Geslien, J. R. Fisher, and C. DeLaney, “Transillumination in breast cancer detection: screening failures and potential,” AJR Am. J. Roentgenol. 144, 619-622 (1985).
[PubMed]

H. Wallberg, A. Alveryd, K. Nasiell, P. Sundelin, U. Bergvall, and S. Troell, “Diaphanography in benign breast disorders. Correlation with clinical examination, mammography, cytology and histology,” Acta Radiol. Diagn. 26, 129-136 (1985).

1984 (2)

V. Marshall, D. C. Williams, and K. D. Smith, “Diaphanography as a means of detecting breast cancer,” Radiology 150, 339-343 (1984).

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, B.-M. Hung, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70-74 (1984).
[CrossRef] [PubMed]

1982 (1)

D. J. Watmough, “A light torch for the transillumination of female breast tissues,” Br. J. Radiol. 55, 142-146 (1982).
[CrossRef] [PubMed]

1980 (1)

B. Ohlsson, J. Gundersen, and D. M. Nilsson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701-706 (1980).
[CrossRef] [PubMed]

1929 (1)

M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721-727 (1929).

Alveryd, A.

H. Wallberg, A. Alveryd, K. Nasiell, P. Sundelin, U. Bergvall, and S. Troell, “Diaphanography in benign breast disorders. Correlation with clinical examination, mammography, cytology and histology,” Acta Radiol. Diagn. 26, 129-136 (1985).

Anderson, E.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency-domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500-2513 (2000).
[CrossRef]

Arena, P. J.

J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, “Ten-year risk of false positive screening mammograms and clinical breast examinations ,” N. Engl. J. Med. 338, 1089-1096 (1998).

Arridge, S.

T. Dierkes, D. Grosenick, K. T. Moesta, M. Moller, P. M. Schlag, H. Rinneberg, and S. Arridge, “Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data,” Phys. Med. Biol. 50, 2519-2542(2005).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

Barbour, R. L.

Barton, M. B.

C. L. Christiansen, F. Wang, M. B. Barton, W. Kreuter, J. G. Elmore, A. E. Gelfand, and S. W. Fletcher, “Predicting the cumulative risk of false-positive mammograms,” J. Natl. Cancer Inst. 92, 1657-1666 (2000).
[CrossRef] [PubMed]

J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, “Ten-year risk of false positive screening mammograms and clinical breast examinations ,” N. Engl. J. Med. 338, 1089-1096 (1998).

Bassi, A.

A. Bassi, L. Spinelli, C. D'Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt. 11054035 (2006).
[CrossRef] [PubMed]

Beaudry, P.

Benaron, D. A.

D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463-1466 (1993).
[CrossRef] [PubMed]

Berger, A. J.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498-6507 (2000).
[CrossRef]

Bergvall, U.

H. Wallberg, A. Alveryd, K. Nasiell, P. Sundelin, U. Bergvall, and S. Troell, “Diaphanography in benign breast disorders. Correlation with clinical examination, mammography, cytology and histology,” Acta Radiol. Diagn. 26, 129-136 (1985).

Bevilacqua, F.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498-6507 (2000).
[CrossRef]

Bigio, I. J.

Boas, D. A.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443-2451 (2008).
[CrossRef] [PubMed]

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef] [PubMed]

Boverman, G.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef] [PubMed]

Boyer, J.

Brooks, D. H.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef] [PubMed]

Butler, J.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 4014-4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279-285 (2005).
[CrossRef]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002).
[CrossRef] [PubMed]

Carp, S. A.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef] [PubMed]

Carpenter, C.

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal. 9, 1143-1156 (2007).
[CrossRef] [PubMed]

Cerussi, A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 4014-4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279-285 (2005).
[CrossRef]

Cerussi, A. E.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443-2451 (2008).
[CrossRef] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498-6507 (2000).
[CrossRef]

Chance, B.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41-46 (2001).
[CrossRef] [PubMed]

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423-3427 (1993).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of optical properties,” Appl. Opt. 28, 2331-2336 (1989).
[CrossRef] [PubMed]

Chatigny, S.

Choe, R.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Christiansen, C. L.

C. L. Christiansen, F. Wang, M. B. Barton, W. Kreuter, J. G. Elmore, A. E. Gelfand, and S. W. Fletcher, “Predicting the cumulative risk of false-positive mammograms,” J. Natl. Cancer Inst. 92, 1657-1666 (2000).
[CrossRef] [PubMed]

Compton, M.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279-285 (2005).
[CrossRef]

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

Coquoz, O.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency-domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500-2513 (2000).
[CrossRef]

Cubeddu, R.

A. Bassi, L. Spinelli, C. D'Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt. 11054035 (2006).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

Culver, J. P.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Cutler, M.

M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721-727 (1929).

D'Andrea, C.

A. Bassi, L. Spinelli, C. D'Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt. 11054035 (2006).
[CrossRef] [PubMed]

Danesini, G.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

Davis, S. C.

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13 (4), 041305 (2008).
[CrossRef] [PubMed]

Debray, S.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, B.-M. Hung, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70-74 (1984).
[CrossRef] [PubMed]

Dehghani, H.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135-145 (2003).
[CrossRef] [PubMed]

DeLaney, C.

G. E. Geslien, J. R. Fisher, and C. DeLaney, “Transillumination in breast cancer detection: screening failures and potential,” AJR Am. J. Roentgenol. 144, 619-622 (1985).
[PubMed]

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

Destouet, J. M.

B. Monsees, J. M. Destouet, and W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463-465 (1987).
[PubMed]

Dierkes, T.

T. Dierkes, D. Grosenick, K. T. Moesta, M. Moller, P. M. Schlag, H. Rinneberg, and S. Arridge, “Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data,” Phys. Med. Biol. 50, 2519-2542(2005).
[CrossRef] [PubMed]

Durduran, T.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Durkin, A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 4014-4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279-285 (2005).
[CrossRef]

Elmore, J. G.

C. L. Christiansen, F. Wang, M. B. Barton, W. Kreuter, J. G. Elmore, A. E. Gelfand, and S. W. Fletcher, “Predicting the cumulative risk of false-positive mammograms,” J. Natl. Cancer Inst. 92, 1657-1666 (2000).
[CrossRef] [PubMed]

J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, “Ten-year risk of false positive screening mammograms and clinical breast examinations ,” N. Engl. J. Med. 338, 1089-1096 (1998).

Fang, Q.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef] [PubMed]

Fantini, S.

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007).
[CrossRef] [PubMed]

N. Liu, A. Sassaroli, M. A. Zucker, and S. Fantini, “Three-element phased-array approach to diffuse optical imaging based on postprocessing of continuous-wave data,” Opt. Lett. 30, 281-283 (2005).
[CrossRef] [PubMed]

N. Liu, A. Sassaroli, and S. Fantini, “Two-dimensional phased arrays of sources and detectors for depth discrimination in diffuse optical imaging,” J. Biomed. Opt. 10051801(2005).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef] [PubMed]

E. L. Heffer and S. Fantini, “Quantitative oximetry of breast tumors: a near-infrared method that identifies two optimal wavelengths for each tumor,” Appl. Opt. 41, 3827-3839 (2002).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, M. A. Franceschini, L. Gotz, A. Heinig, S. Heywang-Kobrunner, O. Schutz, and H. Siebold, “Optical mammography with intensity-modulated light,” in Inter-institute Workshop on in Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, 2000), pp. 111-117.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128-2138 (1994).
[CrossRef]

Fisher, J. R.

G. E. Geslien, J. R. Fisher, and C. DeLaney, “Transillumination in breast cancer detection: screening failures and potential,” AJR Am. J. Roentgenol. 144, 619-622 (1985).
[PubMed]

Fishkin, J. B.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency-domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500-2513 (2000).
[CrossRef]

Fletcher, S. W.

C. L. Christiansen, F. Wang, M. B. Barton, W. Kreuter, J. G. Elmore, A. E. Gelfand, and S. W. Fletcher, “Predicting the cumulative risk of false-positive mammograms,” J. Natl. Cancer Inst. 92, 1657-1666 (2000).
[CrossRef] [PubMed]

J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, “Ten-year risk of false positive screening mammograms and clinical breast examinations ,” N. Engl. J. Med. 338, 1089-1096 (1998).

Franceschini, M. A.

S. Fantini, E. L. Heffer, M. A. Franceschini, L. Gotz, A. Heinig, S. Heywang-Kobrunner, O. Schutz, and H. Siebold, “Optical mammography with intensity-modulated light,” in Inter-institute Workshop on in Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, 2000), pp. 111-117.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128-2138 (1994).
[CrossRef]

Fraysse, F.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, B.-M. Hung, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70-74 (1984).
[CrossRef] [PubMed]

Fuselier, T.

Gabbouj, M.

E. H. W. Meijering, “Spline interpolation in medical imaging: comparison with other convolution-based approaches,” in Signal Processing X: Theories and Applications, M. Gabbouj and P. Kuosmanen, ed. (The European Association for Signal Processing, 2000), pp. 1989-1996.

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Gelfand, A. E.

C. L. Christiansen, F. Wang, M. B. Barton, W. Kreuter, J. G. Elmore, A. E. Gelfand, and S. W. Fletcher, “Predicting the cumulative risk of false-positive mammograms,” J. Natl. Cancer Inst. 92, 1657-1666 (2000).
[CrossRef] [PubMed]

Geslien, G. E.

G. E. Geslien, J. R. Fisher, and C. DeLaney, “Transillumination in breast cancer detection: screening failures and potential,” AJR Am. J. Roentgenol. 144, 619-622 (1985).
[PubMed]

Ghesquiere, S.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, B.-M. Hung, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70-74 (1984).
[CrossRef] [PubMed]

Giammarco, J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Gibson, J. J.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006).
[CrossRef] [PubMed]

Giusto, A.

A. Bassi, L. Spinelli, C. D'Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt. 11054035 (2006).
[CrossRef] [PubMed]

Gotz, L.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, M. A. Franceschini, L. Gotz, A. Heinig, S. Heywang-Kobrunner, O. Schutz, and H. Siebold, “Optical mammography with intensity-modulated light,” in Inter-institute Workshop on in Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, 2000), pp. 111-117.

Graber, H. L.

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128-2138 (1994).
[CrossRef]

Grosenick, D.

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evalutaion of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).
[CrossRef]

T. Dierkes, D. Grosenick, K. T. Moesta, M. Moller, P. M. Schlag, H. Rinneberg, and S. Arridge, “Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data,” Phys. Med. Biol. 50, 2519-2542(2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170-3186 (2003).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927-2943(1999).
[CrossRef]

Gundersen, J.

B. Ohlsson, J. Gundersen, and D. M. Nilsson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701-706 (1980).
[CrossRef] [PubMed]

Hao, Y.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun, “Cancer statistics, 2008,” CA Cancer J. Clin. 58, 71-96 (2008).
[CrossRef] [PubMed]

He, L.

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423-3427 (1993).
[CrossRef] [PubMed]

Heffer, E.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

Heffer, E. L.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef] [PubMed]

E. L. Heffer and S. Fantini, “Quantitative oximetry of breast tumors: a near-infrared method that identifies two optimal wavelengths for each tumor,” Appl. Opt. 41, 3827-3839 (2002).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, M. A. Franceschini, L. Gotz, A. Heinig, S. Heywang-Kobrunner, O. Schutz, and H. Siebold, “Optical mammography with intensity-modulated light,” in Inter-institute Workshop on in Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, 2000), pp. 111-117.

Heinig, A.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, M. A. Franceschini, L. Gotz, A. Heinig, S. Heywang-Kobrunner, O. Schutz, and H. Siebold, “Optical mammography with intensity-modulated light,” in Inter-institute Workshop on in Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, 2000), pp. 111-117.

Heywang-Kobrunner, S.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, M. A. Franceschini, L. Gotz, A. Heinig, S. Heywang-Kobrunner, O. Schutz, and H. Siebold, “Optical mammography with intensity-modulated light,” in Inter-institute Workshop on in Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, 2000), pp. 111-117.

Holboke, M. J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Holcombe, R. F.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002).
[CrossRef] [PubMed]

Hsiang, D.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 4014-4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279-285 (2005).
[CrossRef]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002).
[CrossRef] [PubMed]

Hung, B.-M.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, B.-M. Hung, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70-74 (1984).
[CrossRef] [PubMed]

Jakubowski, D.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498-6507 (2000).
[CrossRef]

Jarry, G.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, B.-M. Hung, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70-74 (1984).
[CrossRef] [PubMed]

Jemal, A.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun, “Cancer statistics, 2008,” CA Cancer J. Clin. 58, 71-96 (2008).
[CrossRef] [PubMed]

Jess, H.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Jiang, S.

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13 (4), 041305 (2008).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal. 9, 1143-1156 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Johnson, T. M.

Kang, K.

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423-3427 (1993).
[CrossRef] [PubMed]

Kaschke, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Kaufman, P. A.

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal. 9, 1143-1156 (2007).
[CrossRef] [PubMed]

Kogel, C.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Kopans, D. B.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef] [PubMed]

Kreuter, W.

C. L. Christiansen, F. Wang, M. B. Barton, W. Kreuter, J. G. Elmore, A. E. Gelfand, and S. W. Fletcher, “Predicting the cumulative risk of false-positive mammograms,” J. Natl. Cancer Inst. 92, 1657-1666 (2000).
[CrossRef] [PubMed]

Kummrow, A.

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evalutaion of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).
[CrossRef]

Kuosmanen, P.

E. H. W. Meijering, “Spline interpolation in medical imaging: comparison with other convolution-based approaches,” in Signal Processing X: Theories and Applications, M. Gabbouj and P. Kuosmanen, ed. (The European Association for Signal Processing, 2000), pp. 1989-1996.

Lanning, R.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002).
[CrossRef] [PubMed]

Laurent, D.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, B.-M. Hung, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70-74 (1984).
[CrossRef] [PubMed]

Liu, N.

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

N. Liu, A. Sassaroli, M. A. Zucker, and S. Fantini, “Three-element phased-array approach to diffuse optical imaging based on postprocessing of continuous-wave data,” Opt. Lett. 30, 281-283 (2005).
[CrossRef] [PubMed]

N. Liu, A. Sassaroli, and S. Fantini, “Two-dimensional phased arrays of sources and detectors for depth discrimination in diffuse optical imaging,” J. Biomed. Opt. 10051801(2005).
[CrossRef] [PubMed]

Maarek, J. M.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, B.-M. Hung, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70-74 (1984).
[CrossRef] [PubMed]

Macdonald, R.

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evalutaion of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).
[CrossRef]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170-3186 (2003).
[CrossRef] [PubMed]

Mantulin, W. W.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Marshall, V.

V. Marshall, D. C. Williams, and K. D. Smith, “Diaphanography as a means of detecting breast cancer,” Radiology 150, 339-343 (1984).

McBride, T.

Mehta, R.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 4014-4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279-285 (2005).
[CrossRef]

Meijering, H. W.

E. H. W. Meijering, “Spline interpolation in medical imaging: comparison with other convolution-based approaches,” in Signal Processing X: Theories and Applications, M. Gabbouj and P. Kuosmanen, ed. (The European Association for Signal Processing, 2000), pp. 1989-1996.

Miller, E. L.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef] [PubMed]

Moceri, V. M.

J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, “Ten-year risk of false positive screening mammograms and clinical breast examinations ,” N. Engl. J. Med. 338, 1089-1096 (1998).

Moesta, K. T.

T. Dierkes, D. Grosenick, K. T. Moesta, M. Moller, P. M. Schlag, H. Rinneberg, and S. Arridge, “Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data,” Phys. Med. Biol. 50, 2519-2542(2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170-3186 (2003).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927-2943(1999).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Moller, M.

T. Dierkes, D. Grosenick, K. T. Moesta, M. Moller, P. M. Schlag, H. Rinneberg, and S. Arridge, “Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data,” Phys. Med. Biol. 50, 2519-2542(2005).
[CrossRef] [PubMed]

Monsees, B.

B. Monsees, J. M. Destouet, and W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463-465 (1987).
[PubMed]

Moore, R. H.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef] [PubMed]

Morin, M.

Mourant, J. R.

Mucke, J.

Murray, T.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun, “Cancer statistics, 2008,” CA Cancer J. Clin. 58, 71-96 (2008).
[CrossRef] [PubMed]

Nasiell, K.

H. Wallberg, A. Alveryd, K. Nasiell, P. Sundelin, U. Bergvall, and S. Troell, “Diaphanography in benign breast disorders. Correlation with clinical examination, mammography, cytology and histology,” Acta Radiol. Diagn. 26, 129-136 (1985).

Nilsson, D. M.

B. Ohlsson, J. Gundersen, and D. M. Nilsson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701-706 (1980).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41-46 (2001).
[CrossRef] [PubMed]

Ohlsson, B.

B. Ohlsson, J. Gundersen, and D. M. Nilsson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701-706 (1980).
[CrossRef] [PubMed]

Osterberg, U.

Painchaud, Y.

Patterson, M. S.

Paulsen, K.

Paulsen, K. D.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443-2451 (2008).
[CrossRef] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13 (4), 041305 (2008).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal. 9, 1143-1156 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135-145 (2003).
[CrossRef] [PubMed]

Pei, Y.

Pera, V.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

Pera, V. E.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef] [PubMed]

Pham, T. H.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency-domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500-2513 (2000).
[CrossRef]

Pifferi, A.

A. Bassi, L. Spinelli, C. D'Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt. 11054035 (2006).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

Pogue, B. W.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443-2451 (2008).
[CrossRef] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13 (4), 041305 (2008).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal. 9, 1143-1156 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135-145 (2003).
[CrossRef] [PubMed]

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1, 391-403 (1997).
[CrossRef] [PubMed]

Polk, S.

J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, “Ten-year risk of false positive screening mammograms and clinical breast examinations ,” N. Engl. J. Med. 338, 1089-1096 (1998).

Poplack, S. P.

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal. 9, 1143-1156 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135-145 (2003).
[CrossRef] [PubMed]

Rinneberg, H.

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evalutaion of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).
[CrossRef]

T. Dierkes, D. Grosenick, K. T. Moesta, M. Moller, P. M. Schlag, H. Rinneberg, and S. Arridge, “Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data,” Phys. Med. Biol. 50, 2519-2542(2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170-3186 (2003).
[CrossRef] [PubMed]

Rinneberg, H. H.

Sassaroli, A.

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007).
[CrossRef] [PubMed]

N. Liu, A. Sassaroli, and S. Fantini, “Two-dimensional phased arrays of sources and detectors for depth discrimination in diffuse optical imaging,” J. Biomed. Opt. 10051801(2005).
[CrossRef] [PubMed]

N. Liu, A. Sassaroli, M. A. Zucker, and S. Fantini, “Three-element phased-array approach to diffuse optical imaging based on postprocessing of continuous-wave data,” Opt. Lett. 30, 281-283 (2005).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

Schlag, P. M.

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evalutaion of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).
[CrossRef]

T. Dierkes, D. Grosenick, K. T. Moesta, M. Moller, P. M. Schlag, H. Rinneberg, and S. Arridge, “Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data,” Phys. Med. Biol. 50, 2519-2542(2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170-3186 (2003).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927-2943(1999).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Schmitz, C. H.

Schutz, O.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, M. A. Franceschini, L. Gotz, A. Heinig, S. Heywang-Kobrunner, O. Schutz, and H. Siebold, “Optical mammography with intensity-modulated light,” in Inter-institute Workshop on in Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, 2000), pp. 111-117.

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

Selb, J.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef] [PubMed]

Sevick, E.

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423-3427 (1993).
[CrossRef] [PubMed]

Shah, N.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 4014-4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279-285 (2005).
[CrossRef]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002).
[CrossRef] [PubMed]

Siebold, H.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, M. A. Franceschini, L. Gotz, A. Heinig, S. Heywang-Kobrunner, O. Schutz, and H. Siebold, “Optical mammography with intensity-modulated light,” in Inter-institute Workshop on in Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, 2000), pp. 111-117.

Siegel, R.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun, “Cancer statistics, 2008,” CA Cancer J. Clin. 58, 71-96 (2008).
[CrossRef] [PubMed]

Smith, K. D.

V. Marshall, D. C. Williams, and K. D. Smith, “Diaphanography as a means of detecting breast cancer,” Radiology 150, 339-343 (1984).

Soho, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Song, X.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Spinelli, L.

A. Bassi, L. Spinelli, C. D'Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt. 11054035 (2006).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

Srinivasan, S.

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13 (4), 041305 (2008).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal. 9, 1143-1156 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Stevenson, D. K.

D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463-1466 (1993).
[CrossRef] [PubMed]

Stroszczynski, C.

Sundelin, P.

H. Wallberg, A. Alveryd, K. Nasiell, P. Sundelin, U. Bergvall, and S. Troell, “Diaphanography in benign breast disorders. Correlation with clinical examination, mammography, cytology and histology,” Acta Radiol. Diagn. 26, 129-136 (1985).

Swartling, J.

A. Bassi, L. Spinelli, C. D'Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt. 11054035 (2006).
[CrossRef] [PubMed]

Taroni, P.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

Testorf, M.

Thun, M. J.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun, “Cancer statistics, 2008,” CA Cancer J. Clin. 58, 71-96 (2008).
[CrossRef] [PubMed]

Torricelli, A.

A. Bassi, L. Spinelli, C. D'Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt. 11054035 (2006).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

Tosteson, T. D.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Totty, W. G.

B. Monsees, J. M. Destouet, and W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463-465 (1987).
[PubMed]

Troell, S.

H. Wallberg, A. Alveryd, K. Nasiell, P. Sundelin, U. Bergvall, and S. Troell, “Diaphanography in benign breast disorders. Correlation with clinical examination, mammography, cytology and histology,” Acta Radiol. Diagn. 26, 129-136 (1985).

Tromberg, B. J.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443-2451 (2008).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 4014-4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279-285 (2005).
[CrossRef]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002).
[CrossRef] [PubMed]

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency-domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500-2513 (2000).
[CrossRef]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498-6507 (2000).
[CrossRef]

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

Vernon, M. L.

Wabnitz, H.

Wallberg, H.

H. Wallberg, A. Alveryd, K. Nasiell, P. Sundelin, U. Bergvall, and S. Troell, “Diaphanography in benign breast disorders. Correlation with clinical examination, mammography, cytology and histology,” Acta Radiol. Diagn. 26, 129-136 (1985).

Wang, F.

C. L. Christiansen, F. Wang, M. B. Barton, W. Kreuter, J. G. Elmore, A. E. Gelfand, and S. W. Fletcher, “Predicting the cumulative risk of false-positive mammograms,” J. Natl. Cancer Inst. 92, 1657-1666 (2000).
[CrossRef] [PubMed]

Wang, J.

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13 (4), 041305 (2008).
[CrossRef] [PubMed]

Ward, E.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun, “Cancer statistics, 2008,” CA Cancer J. Clin. 58, 71-96 (2008).
[CrossRef] [PubMed]

Watmough, D. J.

D. J. Watmough, “A light torch for the transillumination of female breast tissues,” Br. J. Radiol. 55, 142-146 (1982).
[CrossRef] [PubMed]

Wells, W. A.

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal. 9, 1143-1156 (2007).
[CrossRef] [PubMed]

Weng, J.

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423-3427 (1993).
[CrossRef] [PubMed]

Williams, D. C.

V. Marshall, D. C. Williams, and K. D. Smith, “Diaphanography as a means of detecting breast cancer,” Radiology 150, 339-343 (1984).

Wilson, B. C.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

Xu, J.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun, “Cancer statistics, 2008,” CA Cancer J. Clin. 58, 71-96 (2008).
[CrossRef] [PubMed]

Yodh, A. G.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443-2451 (2008).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Zhong, S.

Zubkov, L.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Zucker, M. A.

Technol. Cancer Res. Treat. (1)

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

Acad. Radiol. (1)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006).
[CrossRef] [PubMed]

Acta Radiol. Diagn. (1)

H. Wallberg, A. Alveryd, K. Nasiell, P. Sundelin, U. Bergvall, and S. Troell, “Diaphanography in benign breast disorders. Correlation with clinical examination, mammography, cytology and histology,” Acta Radiol. Diagn. 26, 129-136 (1985).

AJR Am. J. Roentgenol. (1)

G. E. Geslien, J. R. Fisher, and C. DeLaney, “Transillumination in breast cancer detection: screening failures and potential,” AJR Am. J. Roentgenol. 144, 619-622 (1985).
[PubMed]

Antioxid. Redox Signal. (1)

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal. 9, 1143-1156 (2007).
[CrossRef] [PubMed]

Appl. Opt. (8)

E. L. Heffer and S. Fantini, “Quantitative oximetry of breast tumors: a near-infrared method that identifies two optimal wavelengths for each tumor,” Appl. Opt. 41, 3827-3839 (2002).
[CrossRef] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949-957 (1997).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498-6507 (2000).
[CrossRef]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of optical properties,” Appl. Opt. 28, 2331-2336 (1989).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927-2943(1999).
[CrossRef]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135-145 (2003).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170-3186 (2003).
[CrossRef] [PubMed]

Y. Painchaud, S. Chatigny, M. Morin, M. L. Vernon, and P. Beaudry, “Dual-spatial integration for longitudinal localization of inclusions in turbid media,” Appl. Opt. 39, 4730-4732(2000).
[CrossRef]

Br. J. Radiol. (1)

D. J. Watmough, “A light torch for the transillumination of female breast tissues,” Br. J. Radiol. 55, 142-146 (1982).
[CrossRef] [PubMed]

Breast Cancer Res. (2)

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279-285 (2005).
[CrossRef]

V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41-46 (2001).
[CrossRef] [PubMed]

CA Cancer J. Clin. (1)

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun, “Cancer statistics, 2008,” CA Cancer J. Clin. 58, 71-96 (2008).
[CrossRef] [PubMed]

J. Biomed. Eng. (1)

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, B.-M. Hung, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70-74 (1984).
[CrossRef] [PubMed]

J. Biomed. Opt. (8)

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

A. Bassi, L. Spinelli, C. D'Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt. 11054035 (2006).
[CrossRef] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002).
[CrossRef] [PubMed]

N. Liu, A. Sassaroli, and S. Fantini, “Two-dimensional phased arrays of sources and detectors for depth discrimination in diffuse optical imaging,” J. Biomed. Opt. 10051801(2005).
[CrossRef] [PubMed]

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007).
[CrossRef] [PubMed]

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13 (4), 041305 (2008).
[CrossRef] [PubMed]

J. Natl. Cancer Inst. (1)

C. L. Christiansen, F. Wang, M. B. Barton, W. Kreuter, J. G. Elmore, A. E. Gelfand, and S. W. Fletcher, “Predicting the cumulative risk of false-positive mammograms,” J. Natl. Cancer Inst. 92, 1657-1666 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Med. Phys. (2)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443-2451 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (5)

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

T. Dierkes, D. Grosenick, K. T. Moesta, M. Moller, P. M. Schlag, H. Rinneberg, and S. Arridge, “Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data,” Phys. Med. Biol. 50, 2519-2542(2005).
[CrossRef] [PubMed]

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef] [PubMed]

Phys. Rev. E (1)

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evalutaion of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. USA (4)

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423-3427 (1993).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 4014-4019 (2007).
[CrossRef] [PubMed]

Radiology (1)

B. Monsees, J. M. Destouet, and W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463-465 (1987).
[PubMed]

Rev. Sci. Instrum. (1)

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency-domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500-2513 (2000).
[CrossRef]

Science (1)

D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463-1466 (1993).
[CrossRef] [PubMed]

Surg. Gynecol. Obstet. (1)

M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721-727 (1929).

Ten-year risk of false positive screening mammograms and clinical breast examinations (1)

J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, “Ten-year risk of false positive screening mammograms and clinical breast examinations ,” N. Engl. J. Med. 338, 1089-1096 (1998).

World J. Surg. (1)

B. Ohlsson, J. Gundersen, and D. M. Nilsson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701-706 (1980).
[CrossRef] [PubMed]

Other (3)

V. Marshall, D. C. Williams, and K. D. Smith, “Diaphanography as a means of detecting breast cancer,” Radiology 150, 339-343 (1984).

E. H. W. Meijering, “Spline interpolation in medical imaging: comparison with other convolution-based approaches,” in Signal Processing X: Theories and Applications, M. Gabbouj and P. Kuosmanen, ed. (The European Association for Signal Processing, 2000), pp. 1989-1996.

S. Fantini, E. L. Heffer, M. A. Franceschini, L. Gotz, A. Heinig, S. Heywang-Kobrunner, O. Schutz, and H. Siebold, “Optical mammography with intensity-modulated light,” in Inter-institute Workshop on in Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, 2000), pp. 111-117.

Supplementary Material (1)

» Media 1: MOV (9164 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of the hybrid CW, FD instrument for spectral imaging of the human breast. The CW instrument component for spectral acquisition is based on a xenon arc lamp, bandpass filtered in the 400 1000 nm wavelength range, and a CCD camera detector at the exit port of a spectrograph for detection in the wavelength band of interest, 650 900 nm . The FD instrument component, used to estimate the breast tissue thickness in each image pixel, is based on a commercial tissue oximeter that features laser diode sources (emitting at 690 nm ) and a PMT detector. The mechanical scanning is performed on the plane defined by two glass plates for slight breast compression and runs along lines in the x ^ direction with a step size in the y ^ direction (distance between adjacent scanning lines) of 2 mm . The 5 mm diameter detection fiber, which is collecting the transmitted light from the breast, is split into one 3 mm diameter fiber that goes into the PMT and one 4 mm diameter fiber that connects to the spectrograph. This permits an elimination of the detection fiber replacement step to reduce the total scanning time.

Fig. 2
Fig. 2

Results of an experimental test measurement of SNR on a tissuelike phantom. The SNR 2 shows a linear dependence on the CCD exposure time (t) over the range 0 1 s . The stars and the asterisks refer to data at 829 and 650 nm , respectively, which correspond to the cases of highest and lowest SNR, in the spectral range 650 900 nm measured. The thickness of the phantom is 6.3 cm , while its optical properties at two representative wavelengths of 690 and 830 nm are μ a ( 690 nm ) = 0.011 ± 0.003 cm 1 , μ a ( 830 nm ) = 0.013 ± 0.003 cm 1 , μ s ' ( 690 nm ) = 10.6 ± 0.1 cm 1 , μ s ' ( 830 nm ) = 9.5 ± 0.1 cm 1 .

Fig. 3
Fig. 3

(a) Spectrally resolved N-images and (b) second-derivative N -image for subject 1, right breast, cranio-caudal projection (Rcc). The white cursor on the wavelength scale specifies the wavelength displayed ( 700 nm for the N-image, 800 nm for the N -image), and eight more images at neighboring wavelengths are displayed as well. At the interactive sites (http://ase.tufts.edu/biomedical/research/Fantini/om/n.html for the N-image and http://ase.tufts.edu/biomedical/research/Fantini/om/2nd-derivative.html for N -image) one can select any wavelength in the 650 900 nm range, at approximately 0.5 nm intervals, to display the corresponding N-image or N -image, respectively. We also collected the N -images into a movie (Media 1) that displays the images at all wavelengths in rapid succession to display the variability of the displayed structures over the images at different wavelengths.

Fig. 4
Fig. 4

Comparison of the N-image and N -image for subject 1. (a) N-image showing blurred optical inhomogeneities; (b)  N - image showing fine structures assigned to blood vessels that are not resolvable in the N-image; (c) line data of spectrally averaged N ( N λ ) for y = 2 cm in the N-image; (d) line data of the spectrally averaged second derivative ( N λ ) for y = 2 cm . Note that the second derivative is calculated not just from the line graph of N along x ^ [shown in (c)], but also from the line graphs along y ^ , x ^ + y ^ , and x ^ y ^ .

Fig. 5
Fig. 5

(a), (c) Hemoglobin saturation maps measured for subjects 1 and 2, respectively, with paired-wavelength spectral analysis. The false-color representation of oxygenation values is superimposed on the gray-level display of the second derivative of N. (b) and (d) are the histograms of the oxygenation values displayed in (a) and (c), respectively.

Fig. 6
Fig. 6

Measured spectra of ( N N 0 ) / N = Δ N / N at ten representative locations of the optical mammogram for subject 1. The oxygen saturation values corresponding to each spectrum are indicated and range from 25% to 98%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SO 2 = ε Hb ( λ 2 ) ε Hb ( λ 1 ) μ s 0 ' ( λ 1 ) μ s 0 ' ( λ 2 ) [ ε Hb ( λ 2 ) ε Hb O 2 ( λ 2 ) ] + [ ε Hb O 2 ( λ 1 ) ε Hb ( λ 1 ) ] μ s 0 ' ( λ 1 ) μ s 0 ' ( λ 2 ) ,

Metrics