Abstract

We present the development and implementation of a new near infrared transillumination imaging modality for tissue imaging. Exogenous inhaled hyperoxic and hypercarbic gases are used as “vasoactive contrast agents” via the production of changes in concentration of the endogenous HbO2 and Hb in blood. This vasoactive differential imaging method is employed to acquire data and for subsequent image analysis. Spectroscopic changes obtained from transillumination measurements on the palms of healthy volunteers demonstrate the functionality of the imaging platform. This modality is being developed to monitor suspect breast lesions in a clinical setting based on the hypothesis that the atypical tumor vascular environment will yield sufficient contrast for differential optical imaging between diseased and healthy tissue.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997).
    [CrossRef]
  2. P. D. Gatehouse, T. He, B. K. Puri, R. D. Thomas, D. Resnick, and G. M. Bydder, “Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones,” Br. J. Radiol. 77, 641-647 (2004).
    [CrossRef] [PubMed]
  3. I. G. Zubal, S. S. Spencer, K. Imam, J. Seibyl, E. O. Smith, G. Wisniewski, and P. B. Hoffer, “Difference images calculated from ictal and interictal technetium-99 m-HMPAO SPECT scans of epilepsy,” J. Nucl. Med. 36, 684-689 (1995).
    [PubMed]
  4. S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J Biomed. Opt. 11, 064016 (2006).
    [CrossRef]
  5. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716 (2007).
    [CrossRef] [PubMed]
  6. E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photon. 1, 526-530 (2007).
    [CrossRef]
  7. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767-2772 (2000).
    [CrossRef] [PubMed]
  8. C. H. Schmitz, D. P. Klemer, R. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).
    [CrossRef] [PubMed]
  9. T. Noponen, D. Kicic, K. Kotilahti, T. Kajava, S. Kahkonen, I. Nissila, P. Merilainen, and T. Katila, “Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain,” Proc. SPIE 5693, 179-190 (2005).
    [CrossRef]
  10. G. Taga, K. Asakawa, A. Maki, Y. Konishi, and H. Koizumi, “Brain imaging in awake infants by near-infrared optical topography,” Proc. Natl. Acad. Sci. USA 100, 10722-10727 (2003).
    [CrossRef] [PubMed]
  11. T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11, 361-370 (2008).
    [CrossRef] [PubMed]
  12. H. Key, E. R. Davies, P. C. Jackson, and P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579-590 (1991).
    [CrossRef] [PubMed]
  13. T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), pp. 59-66.
  14. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420-4425 (2001).
    [CrossRef] [PubMed]
  15. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and, physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534-540 (2004).
    [CrossRef] [PubMed]
  16. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
    [CrossRef] [PubMed]
  17. X. F. Cheng, J. M. Mao, R. Bush, D. B. Kopans, R. H. Moore, and M. Chorlton, “Breast cancer detection by mapping hemoglobin concentration and oxygen saturation,” Appl. Opt. 42, 6412-6421 (2003).
    [CrossRef] [PubMed]
  18. S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165-181 (2006).
    [CrossRef] [PubMed]
  19. S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
    [PubMed]
  20. Z. X. Guo, S. K. Wan, D. A. August, J. P. Ying, S. M. Dunn, and J. L. Semmlow, “Optical imaging of breast tumor through temporal log-slope difference mappings,” Comput. Biol. Med. 36, 209-223 (2006).
    [PubMed]
  21. E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
    [CrossRef] [PubMed]
  22. B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
    [CrossRef] [PubMed]
  23. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology (Oak Brook, Ill.) 237, 57-66 (2005).
  24. K. T. Kotz, K. S. Kalogerakis, W. N. Boenig, K. Amin, and G. W. Faris, “Dynamic imaging of tumor vasculature in rodents: carbogen-induced contrast enhancement,” Proc. SPIE 5312, 273-277 (2004).
    [CrossRef]
  25. D. M. Brizel, S. Lin, J. L. Johnson, J. Brooks, M. W. Dewhirst, and C. A. Piantadosi, “The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation,” Br. J. Cancer 72, 1120-1124 (1995).
    [CrossRef] [PubMed]
  26. M. W. Dewhirst, E. T. Ong, G. L. Rosner, S. W. Rehmus, S. Shan, R. D. Braun, D. M. Brizel, and T. W. Secomb, “Arteriolar oxygenation in tumour and subcutaneous arterioles: Effects of inspired air oxygen content,” Br. J. Cancer Suppl. 27, S241-S246 (1996).
    [PubMed]
  27. J. L. Lanzen, R. D. Braun, A. L. Ong, and M. W. Dewhirst, “Variability in blood flow and pO2 in tumors in response to carbogen breathing,” Int. J. Radiat. Oncol. Biol. Phys. 42, 855-859 (1998).
    [CrossRef] [PubMed]
  28. K. T. Kotz, S. S. Dixit, A. D. Gibbs, J. M. Orduna, Z. Haroon, K. Amin, and G. W. Faris, “Inspiratory contrast for in vivo optical imaging,” Opt. Express 16, 19-31 (2008).
    [CrossRef] [PubMed]
  29. S. Dixit, T. Le, K. Amin, C. Comstock, and G. Faris, “Cancer detection using infrared transillumination,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper JTuA47.
    [CrossRef]
  30. M. Rijpkema, J. H. Kaanders, F. B. Joosten, A. J. van der Kogel, and A. Heerschap, “Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys., Suppl. 53, 1185-1191 (2002).
    [CrossRef]
  31. S. Prahl, “Optical absorption of hemoglobin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/hemoglobin/index.html.
  32. L. M. Klassen, B. J. MacIntosh, and R. S. Menon, “Influence of hypoxia on wavelength dependence of differential path length and near-infrared quantification,” Phys. Med. Biol. 47, 1573-1589 (2002).
    [CrossRef] [PubMed]
  33. M. Essenpreis, C. E. Elwell, M. Cope, P. Vanderzee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418-425 (1993).
    [CrossRef] [PubMed]
  34. M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771-1782 (1998).
    [PubMed]
  35. M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9-20 (1993).
    [PubMed]
  36. S. D. Milone, G. E. Newton, and J. D. Parker, “Hemodynamic and biochemical effects of 100% oxygen breathing in humans,” Can. J. Physiol. Pharmacol. 77, 124-130 (1999).
    [CrossRef] [PubMed]
  37. T. Q. Duong, C. Iadecola, and S. G. Kim, “Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow,” Magn. Reson. Med. 45, 61-70 (2001).
    [CrossRef] [PubMed]
  38. N. A. Watson, S. C. Beards, N. Altaf, A. Kassner, and A. Jackson, “The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase-contrast angiography,” Eur. J. Anaesthesiol. 17, 152-159 (2000).
    [PubMed]

2008

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11, 361-370 (2008).
[CrossRef] [PubMed]

K. T. Kotz, S. S. Dixit, A. D. Gibbs, J. M. Orduna, Z. Haroon, K. Amin, and G. W. Faris, “Inspiratory contrast for in vivo optical imaging,” Opt. Express 16, 19-31 (2008).
[CrossRef] [PubMed]

2007

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716 (2007).
[CrossRef] [PubMed]

E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photon. 1, 526-530 (2007).
[CrossRef]

S. Dixit, T. Le, K. Amin, C. Comstock, and G. Faris, “Cancer detection using infrared transillumination,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper JTuA47.
[CrossRef]

2006

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J Biomed. Opt. 11, 064016 (2006).
[CrossRef]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165-181 (2006).
[CrossRef] [PubMed]

Z. X. Guo, S. K. Wan, D. A. August, J. P. Ying, S. M. Dunn, and J. L. Semmlow, “Optical imaging of breast tumor through temporal log-slope difference mappings,” Comput. Biol. Med. 36, 209-223 (2006).
[PubMed]

2005

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology (Oak Brook, Ill.) 237, 57-66 (2005).

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

T. Noponen, D. Kicic, K. Kotilahti, T. Kajava, S. Kahkonen, I. Nissila, P. Merilainen, and T. Katila, “Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain,” Proc. SPIE 5693, 179-190 (2005).
[CrossRef]

C. H. Schmitz, D. P. Klemer, R. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).
[CrossRef] [PubMed]

2004

P. D. Gatehouse, T. He, B. K. Puri, R. D. Thomas, D. Resnick, and G. M. Bydder, “Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones,” Br. J. Radiol. 77, 641-647 (2004).
[CrossRef] [PubMed]

K. T. Kotz, K. S. Kalogerakis, W. N. Boenig, K. Amin, and G. W. Faris, “Dynamic imaging of tumor vasculature in rodents: carbogen-induced contrast enhancement,” Proc. SPIE 5312, 273-277 (2004).
[CrossRef]

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and, physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef] [PubMed]

2003

G. Taga, K. Asakawa, A. Maki, Y. Konishi, and H. Koizumi, “Brain imaging in awake infants by near-infrared optical topography,” Proc. Natl. Acad. Sci. USA 100, 10722-10727 (2003).
[CrossRef] [PubMed]

X. F. Cheng, J. M. Mao, R. Bush, D. B. Kopans, R. H. Moore, and M. Chorlton, “Breast cancer detection by mapping hemoglobin concentration and oxygen saturation,” Appl. Opt. 42, 6412-6421 (2003).
[CrossRef] [PubMed]

2002

M. Rijpkema, J. H. Kaanders, F. B. Joosten, A. J. van der Kogel, and A. Heerschap, “Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys., Suppl. 53, 1185-1191 (2002).
[CrossRef]

L. M. Klassen, B. J. MacIntosh, and R. S. Menon, “Influence of hypoxia on wavelength dependence of differential path length and near-infrared quantification,” Phys. Med. Biol. 47, 1573-1589 (2002).
[CrossRef] [PubMed]

2001

T. Q. Duong, C. Iadecola, and S. G. Kim, “Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow,” Magn. Reson. Med. 45, 61-70 (2001).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420-4425 (2001).
[CrossRef] [PubMed]

2000

N. A. Watson, S. C. Beards, N. Altaf, A. Kassner, and A. Jackson, “The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase-contrast angiography,” Eur. J. Anaesthesiol. 17, 152-159 (2000).
[PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767-2772 (2000).
[CrossRef] [PubMed]

1999

S. D. Milone, G. E. Newton, and J. D. Parker, “Hemodynamic and biochemical effects of 100% oxygen breathing in humans,” Can. J. Physiol. Pharmacol. 77, 124-130 (1999).
[CrossRef] [PubMed]

1998

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771-1782 (1998).
[PubMed]

J. L. Lanzen, R. D. Braun, A. L. Ong, and M. W. Dewhirst, “Variability in blood flow and pO2 in tumors in response to carbogen breathing,” Int. J. Radiat. Oncol. Biol. Phys. 42, 855-859 (1998).
[CrossRef] [PubMed]

1997

J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997).
[CrossRef]

1996

M. W. Dewhirst, E. T. Ong, G. L. Rosner, S. W. Rehmus, S. Shan, R. D. Braun, D. M. Brizel, and T. W. Secomb, “Arteriolar oxygenation in tumour and subcutaneous arterioles: Effects of inspired air oxygen content,” Br. J. Cancer Suppl. 27, S241-S246 (1996).
[PubMed]

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), pp. 59-66.

1995

D. M. Brizel, S. Lin, J. L. Johnson, J. Brooks, M. W. Dewhirst, and C. A. Piantadosi, “The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation,” Br. J. Cancer 72, 1120-1124 (1995).
[CrossRef] [PubMed]

I. G. Zubal, S. S. Spencer, K. Imam, J. Seibyl, E. O. Smith, G. Wisniewski, and P. B. Hoffer, “Difference images calculated from ictal and interictal technetium-99 m-HMPAO SPECT scans of epilepsy,” J. Nucl. Med. 36, 684-689 (1995).
[PubMed]

1993

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9-20 (1993).
[PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. Vanderzee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418-425 (1993).
[CrossRef] [PubMed]

1991

H. Key, E. R. Davies, P. C. Jackson, and P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579-590 (1991).
[CrossRef] [PubMed]

Altaf, N.

N. A. Watson, S. C. Beards, N. Altaf, A. Kassner, and A. Jackson, “The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase-contrast angiography,” Eur. J. Anaesthesiol. 17, 152-159 (2000).
[PubMed]

Amin, K.

K. T. Kotz, S. S. Dixit, A. D. Gibbs, J. M. Orduna, Z. Haroon, K. Amin, and G. W. Faris, “Inspiratory contrast for in vivo optical imaging,” Opt. Express 16, 19-31 (2008).
[CrossRef] [PubMed]

S. Dixit, T. Le, K. Amin, C. Comstock, and G. Faris, “Cancer detection using infrared transillumination,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper JTuA47.
[CrossRef]

K. T. Kotz, K. S. Kalogerakis, W. N. Boenig, K. Amin, and G. W. Faris, “Dynamic imaging of tumor vasculature in rodents: carbogen-induced contrast enhancement,” Proc. SPIE 5312, 273-277 (2004).
[CrossRef]

Arridge, S. R.

Asakawa, K.

G. Taga, K. Asakawa, A. Maki, Y. Konishi, and H. Koizumi, “Brain imaging in awake infants by near-infrared optical topography,” Proc. Natl. Acad. Sci. USA 100, 10722-10727 (2003).
[CrossRef] [PubMed]

August, D. A.

Z. X. Guo, S. K. Wan, D. A. August, J. P. Ying, S. M. Dunn, and J. L. Semmlow, “Optical imaging of breast tumor through temporal log-slope difference mappings,” Comput. Biol. Med. 36, 209-223 (2006).
[PubMed]

Baddeley, H.

J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997).
[CrossRef]

Barbour, R. L.

Beards, S. C.

N. A. Watson, S. C. Beards, N. Altaf, A. Kassner, and A. Jackson, “The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase-contrast angiography,” Eur. J. Anaesthesiol. 17, 152-159 (2000).
[PubMed]

Boas, D.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Boas, D. A.

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11, 361-370 (2008).
[CrossRef] [PubMed]

Boenig, W. N.

K. T. Kotz, K. S. Kalogerakis, W. N. Boenig, K. Amin, and G. W. Faris, “Dynamic imaging of tumor vasculature in rodents: carbogen-induced contrast enhancement,” Proc. SPIE 5312, 273-277 (2004).
[CrossRef]

Bortfeld, H.

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11, 361-370 (2008).
[CrossRef] [PubMed]

Braun, R. D.

J. L. Lanzen, R. D. Braun, A. L. Ong, and M. W. Dewhirst, “Variability in blood flow and pO2 in tumors in response to carbogen breathing,” Int. J. Radiat. Oncol. Biol. Phys. 42, 855-859 (1998).
[CrossRef] [PubMed]

M. W. Dewhirst, E. T. Ong, G. L. Rosner, S. W. Rehmus, S. Shan, R. D. Braun, D. M. Brizel, and T. W. Secomb, “Arteriolar oxygenation in tumour and subcutaneous arterioles: Effects of inspired air oxygen content,” Br. J. Cancer Suppl. 27, S241-S246 (1996).
[PubMed]

Brizel, D. M.

M. W. Dewhirst, E. T. Ong, G. L. Rosner, S. W. Rehmus, S. Shan, R. D. Braun, D. M. Brizel, and T. W. Secomb, “Arteriolar oxygenation in tumour and subcutaneous arterioles: Effects of inspired air oxygen content,” Br. J. Cancer Suppl. 27, S241-S246 (1996).
[PubMed]

D. M. Brizel, S. Lin, J. L. Johnson, J. Brooks, M. W. Dewhirst, and C. A. Piantadosi, “The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation,” Br. J. Cancer 72, 1120-1124 (1995).
[CrossRef] [PubMed]

Brooks, J.

D. M. Brizel, S. Lin, J. L. Johnson, J. Brooks, M. W. Dewhirst, and C. A. Piantadosi, “The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation,” Br. J. Cancer 72, 1120-1124 (1995).
[CrossRef] [PubMed]

Bush, R.

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and, physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420-4425 (2001).
[CrossRef] [PubMed]

Bydder, G. M.

P. D. Gatehouse, T. He, B. K. Puri, R. D. Thomas, D. Resnick, and G. M. Bydder, “Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones,” Br. J. Radiol. 77, 641-647 (2004).
[CrossRef] [PubMed]

Caine, L. A.

J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997).
[CrossRef]

Carp, S. A.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420-4425 (2001).
[CrossRef] [PubMed]

Cerussi, A. E.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and, physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef] [PubMed]

Chance, B.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Chen, N.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology (Oak Brook, Ill.) 237, 57-66 (2005).

Cheng, X. F.

Choe, R.

Chorlton, M.

Comstock, C.

S. Dixit, T. Le, K. Amin, C. Comstock, and G. Faris, “Cancer detection using infrared transillumination,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper JTuA47.
[CrossRef]

Cope, M.

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9-20 (1993).
[PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. Vanderzee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418-425 (1993).
[CrossRef] [PubMed]

Corlu, A.

Cronin, E. B.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology (Oak Brook, Ill.) 237, 57-66 (2005).

Currier, A. A.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology (Oak Brook, Ill.) 237, 57-66 (2005).

Davies, E. R.

H. Key, E. R. Davies, P. C. Jackson, and P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579-590 (1991).
[CrossRef] [PubMed]

Dehghani, H.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Delpy, D. T.

M. Essenpreis, C. E. Elwell, M. Cope, P. Vanderzee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418-425 (1993).
[CrossRef] [PubMed]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9-20 (1993).
[PubMed]

Demos, S. G.

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165-181 (2006).
[CrossRef] [PubMed]

Dewhirst, M. W.

J. L. Lanzen, R. D. Braun, A. L. Ong, and M. W. Dewhirst, “Variability in blood flow and pO2 in tumors in response to carbogen breathing,” Int. J. Radiat. Oncol. Biol. Phys. 42, 855-859 (1998).
[CrossRef] [PubMed]

M. W. Dewhirst, E. T. Ong, G. L. Rosner, S. W. Rehmus, S. Shan, R. D. Braun, D. M. Brizel, and T. W. Secomb, “Arteriolar oxygenation in tumour and subcutaneous arterioles: Effects of inspired air oxygen content,” Br. J. Cancer Suppl. 27, S241-S246 (1996).
[PubMed]

D. M. Brizel, S. Lin, J. L. Johnson, J. Brooks, M. W. Dewhirst, and C. A. Piantadosi, “The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation,” Br. J. Cancer 72, 1120-1124 (1995).
[CrossRef] [PubMed]

Dixit, S.

S. Dixit, T. Le, K. Amin, C. Comstock, and G. Faris, “Cancer detection using infrared transillumination,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper JTuA47.
[CrossRef]

Dixit, S. S.

Dunn, S. M.

Z. X. Guo, S. K. Wan, D. A. August, J. P. Ying, S. M. Dunn, and J. L. Semmlow, “Optical imaging of breast tumor through temporal log-slope difference mappings,” Comput. Biol. Med. 36, 209-223 (2006).
[PubMed]

Duong, T. Q.

T. Q. Duong, C. Iadecola, and S. G. Kim, “Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow,” Magn. Reson. Med. 45, 61-70 (2001).
[CrossRef] [PubMed]

Durduran, T.

Durkin, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

Eker, C.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420-4425 (2001).
[CrossRef] [PubMed]

Elwell, C. E.

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9-20 (1993).
[PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. Vanderzee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418-425 (1993).
[CrossRef] [PubMed]

Espinoza, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420-4425 (2001).
[CrossRef] [PubMed]

Essenpreis, M.

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9-20 (1993).
[PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. Vanderzee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418-425 (1993).
[CrossRef] [PubMed]

Fang, Q.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Fantini, S.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

Faris, G.

S. Dixit, T. Le, K. Amin, C. Comstock, and G. Faris, “Cancer detection using infrared transillumination,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper JTuA47.
[CrossRef]

Faris, G. W.

K. T. Kotz, S. S. Dixit, A. D. Gibbs, J. M. Orduna, Z. Haroon, K. Amin, and G. W. Faris, “Inspiratory contrast for in vivo optical imaging,” Opt. Express 16, 19-31 (2008).
[CrossRef] [PubMed]

K. T. Kotz, K. S. Kalogerakis, W. N. Boenig, K. Amin, and G. W. Faris, “Dynamic imaging of tumor vasculature in rodents: carbogen-induced contrast enhancement,” Proc. SPIE 5312, 273-277 (2004).
[CrossRef]

Fishkin, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420-4425 (2001).
[CrossRef] [PubMed]

Franco, N. A.

Gandjbakhche, A. H.

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165-181 (2006).
[CrossRef] [PubMed]

Gatehouse, P. D.

P. D. Gatehouse, T. He, B. K. Puri, R. D. Thomas, D. Resnick, and G. M. Bydder, “Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones,” Br. J. Radiol. 77, 641-647 (2004).
[CrossRef] [PubMed]

Gibbs, A. D.

Graber, H. L.

Griffiths, J. R.

J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997).
[CrossRef]

Guo, Z. X.

Z. X. Guo, S. K. Wan, D. A. August, J. P. Ying, S. M. Dunn, and J. L. Semmlow, “Optical imaging of breast tumor through temporal log-slope difference mappings,” Comput. Biol. Med. 36, 209-223 (2006).
[PubMed]

Hardin, R.

Haroon, Z.

He, T.

P. D. Gatehouse, T. He, B. K. Puri, R. D. Thomas, D. Resnick, and G. M. Bydder, “Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones,” Br. J. Radiol. 77, 641-647 (2004).
[CrossRef] [PubMed]

Heekeren, H. R.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771-1782 (1998).
[PubMed]

Heerschap, A.

M. Rijpkema, J. H. Kaanders, F. B. Joosten, A. J. van der Kogel, and A. Heerschap, “Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys., Suppl. 53, 1185-1191 (2002).
[CrossRef]

Heffer, E.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

Heffer, E. L.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

Hillman, E. M. C.

E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photon. 1, 526-530 (2007).
[CrossRef]

Hoffer, P. B.

I. G. Zubal, S. S. Spencer, K. Imam, J. Seibyl, E. O. Smith, G. Wisniewski, and P. B. Hoffer, “Difference images calculated from ictal and interictal technetium-99 m-HMPAO SPECT scans of epilepsy,” J. Nucl. Med. 36, 684-689 (1995).
[PubMed]

Hornung, R.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420-4425 (2001).
[CrossRef] [PubMed]

Horst, S.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771-1782 (1998).
[PubMed]

Hoskin, P. J.

J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997).
[CrossRef]

Howe, F. A.

J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997).
[CrossRef]

Hsiang, D.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and, physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef] [PubMed]

Huang, M.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology (Oak Brook, Ill.) 237, 57-66 (2005).

Iadecola, C.

T. Q. Duong, C. Iadecola, and S. G. Kim, “Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow,” Magn. Reson. Med. 45, 61-70 (2001).
[CrossRef] [PubMed]

Imam, K.

I. G. Zubal, S. S. Spencer, K. Imam, J. Seibyl, E. O. Smith, G. Wisniewski, and P. B. Hoffer, “Difference images calculated from ictal and interictal technetium-99 m-HMPAO SPECT scans of epilepsy,” J. Nucl. Med. 36, 684-689 (1995).
[PubMed]

Jackson, A.

N. A. Watson, S. C. Beards, N. Altaf, A. Kassner, and A. Jackson, “The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase-contrast angiography,” Eur. J. Anaesthesiol. 17, 152-159 (2000).
[PubMed]

Jackson, P. C.

H. Key, E. R. Davies, P. C. Jackson, and P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579-590 (1991).
[CrossRef] [PubMed]

Jakubowski, D.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and, physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef] [PubMed]

Jiang, S. D.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Johnson, J. L.

D. M. Brizel, S. Lin, J. L. Johnson, J. Brooks, M. W. Dewhirst, and C. A. Piantadosi, “The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation,” Br. J. Cancer 72, 1120-1124 (1995).
[CrossRef] [PubMed]

Joosten, F. B.

M. Rijpkema, J. H. Kaanders, F. B. Joosten, A. J. van der Kogel, and A. Heerschap, “Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys., Suppl. 53, 1185-1191 (2002).
[CrossRef]

Kaanders, J. H.

M. Rijpkema, J. H. Kaanders, F. B. Joosten, A. J. van der Kogel, and A. Heerschap, “Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys., Suppl. 53, 1185-1191 (2002).
[CrossRef]

Kahkonen, S.

T. Noponen, D. Kicic, K. Kotilahti, T. Kajava, S. Kahkonen, I. Nissila, P. Merilainen, and T. Katila, “Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain,” Proc. SPIE 5693, 179-190 (2005).
[CrossRef]

Kajava, T.

T. Noponen, D. Kicic, K. Kotilahti, T. Kajava, S. Kahkonen, I. Nissila, P. Merilainen, and T. Katila, “Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain,” Proc. SPIE 5693, 179-190 (2005).
[CrossRef]

Kalogerakis, K. S.

K. T. Kotz, K. S. Kalogerakis, W. N. Boenig, K. Amin, and G. W. Faris, “Dynamic imaging of tumor vasculature in rodents: carbogen-induced contrast enhancement,” Proc. SPIE 5312, 273-277 (2004).
[CrossRef]

Kassner, A.

N. A. Watson, S. C. Beards, N. Altaf, A. Kassner, and A. Jackson, “The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase-contrast angiography,” Eur. J. Anaesthesiol. 17, 152-159 (2000).
[PubMed]

Katila, T.

T. Noponen, D. Kicic, K. Kotilahti, T. Kajava, S. Kahkonen, I. Nissila, P. Merilainen, and T. Katila, “Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain,” Proc. SPIE 5693, 179-190 (2005).
[CrossRef]

Katz, M. S.

Kauffman, T.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Key, H.

H. Key, E. R. Davies, P. C. Jackson, and P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579-590 (1991).
[CrossRef] [PubMed]

Kicic, D.

T. Noponen, D. Kicic, K. Kotilahti, T. Kajava, S. Kahkonen, I. Nissila, P. Merilainen, and T. Katila, “Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain,” Proc. SPIE 5693, 179-190 (2005).
[CrossRef]

Kim, S. G.

T. Q. Duong, C. Iadecola, and S. G. Kim, “Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow,” Magn. Reson. Med. 45, 61-70 (2001).
[CrossRef] [PubMed]

Klassen, L. M.

L. M. Klassen, B. J. MacIntosh, and R. S. Menon, “Influence of hypoxia on wavelength dependence of differential path length and near-infrared quantification,” Phys. Med. Biol. 47, 1573-1589 (2002).
[CrossRef] [PubMed]

Klemer, D. P.

Kogel, C.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Kohl, M.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771-1782 (1998).
[PubMed]

Koizumi, H.

G. Taga, K. Asakawa, A. Maki, Y. Konishi, and H. Koizumi, “Brain imaging in awake infants by near-infrared optical topography,” Proc. Natl. Acad. Sci. USA 100, 10722-10727 (2003).
[CrossRef] [PubMed]

Konishi, Y.

G. Taga, K. Asakawa, A. Maki, Y. Konishi, and H. Koizumi, “Brain imaging in awake infants by near-infrared optical topography,” Proc. Natl. Acad. Sci. USA 100, 10722-10727 (2003).
[CrossRef] [PubMed]

Kopans, D.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Kopans, D. B.

Kotilahti, K.

T. Noponen, D. Kicic, K. Kotilahti, T. Kajava, S. Kahkonen, I. Nissila, P. Merilainen, and T. Katila, “Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain,” Proc. SPIE 5693, 179-190 (2005).
[CrossRef]

Kotz, K. T.

K. T. Kotz, S. S. Dixit, A. D. Gibbs, J. M. Orduna, Z. Haroon, K. Amin, and G. W. Faris, “Inspiratory contrast for in vivo optical imaging,” Opt. Express 16, 19-31 (2008).
[CrossRef] [PubMed]

K. T. Kotz, K. S. Kalogerakis, W. N. Boenig, K. Amin, and G. W. Faris, “Dynamic imaging of tumor vasculature in rodents: carbogen-induced contrast enhancement,” Proc. SPIE 5312, 273-277 (2004).
[CrossRef]

Lanzen, J. L.

J. L. Lanzen, R. D. Braun, A. L. Ong, and M. W. Dewhirst, “Variability in blood flow and pO2 in tumors in response to carbogen breathing,” Int. J. Radiat. Oncol. Biol. Phys. 42, 855-859 (1998).
[CrossRef] [PubMed]

Le, T.

S. Dixit, T. Le, K. Amin, C. Comstock, and G. Faris, “Cancer detection using infrared transillumination,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper JTuA47.
[CrossRef]

Levin, M. B.

Levina, R. D.

Lin, S.

D. M. Brizel, S. Lin, J. L. Johnson, J. Brooks, M. W. Dewhirst, and C. A. Piantadosi, “The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation,” Br. J. Cancer 72, 1120-1124 (1995).
[CrossRef] [PubMed]

Liu, N.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

MacIntosh, B. J.

L. M. Klassen, B. J. MacIntosh, and R. S. Menon, “Influence of hypoxia on wavelength dependence of differential path length and near-infrared quantification,” Phys. Med. Biol. 47, 1573-1589 (2002).
[CrossRef] [PubMed]

Maki, A.

G. Taga, K. Asakawa, A. Maki, Y. Konishi, and H. Koizumi, “Brain imaging in awake infants by near-infrared optical topography,” Proc. Natl. Acad. Sci. USA 100, 10722-10727 (2003).
[CrossRef] [PubMed]

Mao, J. M.

Menon, R. S.

L. M. Klassen, B. J. MacIntosh, and R. S. Menon, “Influence of hypoxia on wavelength dependence of differential path length and near-infrared quantification,” Phys. Med. Biol. 47, 1573-1589 (2002).
[CrossRef] [PubMed]

Merilainen, P.

T. Noponen, D. Kicic, K. Kotilahti, T. Kajava, S. Kahkonen, I. Nissila, P. Merilainen, and T. Katila, “Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain,” Proc. SPIE 5693, 179-190 (2005).
[CrossRef]

Milone, S. D.

S. D. Milone, G. E. Newton, and J. D. Parker, “Hemodynamic and biochemical effects of 100% oxygen breathing in humans,” Can. J. Physiol. Pharmacol. 77, 124-130 (1999).
[CrossRef] [PubMed]

Moore, A.

E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photon. 1, 526-530 (2007).
[CrossRef]

Moore, R.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Moore, R. H.

Newton, G. E.

S. D. Milone, G. E. Newton, and J. D. Parker, “Hemodynamic and biochemical effects of 100% oxygen breathing in humans,” Can. J. Physiol. Pharmacol. 77, 124-130 (1999).
[CrossRef] [PubMed]

Nissila, I.

T. Noponen, D. Kicic, K. Kotilahti, T. Kajava, S. Kahkonen, I. Nissila, P. Merilainen, and T. Katila, “Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain,” Proc. SPIE 5693, 179-190 (2005).
[CrossRef]

Nolte, C.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771-1782 (1998).
[PubMed]

Noponen, T.

T. Noponen, D. Kicic, K. Kotilahti, T. Kajava, S. Kahkonen, I. Nissila, P. Merilainen, and T. Katila, “Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain,” Proc. SPIE 5693, 179-190 (2005).
[CrossRef]

Ntziachristos, V.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Obrig, H.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771-1782 (1998).
[PubMed]

Ong, A. L.

J. L. Lanzen, R. D. Braun, A. L. Ong, and M. W. Dewhirst, “Variability in blood flow and pO2 in tumors in response to carbogen breathing,” Int. J. Radiat. Oncol. Biol. Phys. 42, 855-859 (1998).
[CrossRef] [PubMed]

Ong, E. T.

M. W. Dewhirst, E. T. Ong, G. L. Rosner, S. W. Rehmus, S. Shan, R. D. Braun, D. M. Brizel, and T. W. Secomb, “Arteriolar oxygenation in tumour and subcutaneous arterioles: Effects of inspired air oxygen content,” Br. J. Cancer Suppl. 27, S241-S246 (1996).
[PubMed]

Orduna, J. M.

Page, D. L.

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), pp. 59-66.

Parker, J. D.

S. D. Milone, G. E. Newton, and J. D. Parker, “Hemodynamic and biochemical effects of 100% oxygen breathing in humans,” Can. J. Physiol. Pharmacol. 77, 124-130 (1999).
[CrossRef] [PubMed]

Paulsen, K. D.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Pei, Y.

Pera, V.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

Pera, V. E.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

Piantadosi, C. A.

D. M. Brizel, S. Lin, J. L. Johnson, J. Brooks, M. W. Dewhirst, and C. A. Piantadosi, “The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation,” Br. J. Cancer 72, 1120-1124 (1995).
[CrossRef] [PubMed]

Pogue, B. W.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Poplack, S. P.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Powell, M. E. B.

J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997).
[CrossRef]

Prahl, S.

S. Prahl, “Optical absorption of hemoglobin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/hemoglobin/index.html.

Puri, B. K.

P. D. Gatehouse, T. He, B. K. Puri, R. D. Thomas, D. Resnick, and G. M. Bydder, “Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones,” Br. J. Radiol. 77, 641-647 (2004).
[CrossRef] [PubMed]

Rafferty, E.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Rehmus, S. W.

M. W. Dewhirst, E. T. Ong, G. L. Rosner, S. W. Rehmus, S. Shan, R. D. Braun, D. M. Brizel, and T. W. Secomb, “Arteriolar oxygenation in tumour and subcutaneous arterioles: Effects of inspired air oxygen content,” Br. J. Cancer Suppl. 27, S241-S246 (1996).
[PubMed]

Resnick, D.

P. D. Gatehouse, T. He, B. K. Puri, R. D. Thomas, D. Resnick, and G. M. Bydder, “Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones,” Br. J. Radiol. 77, 641-647 (2004).
[CrossRef] [PubMed]

Rijpkema, M.

M. Rijpkema, J. H. Kaanders, F. B. Joosten, A. J. van der Kogel, and A. Heerschap, “Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys., Suppl. 53, 1185-1191 (2002).
[CrossRef]

Robinson, S. P.

J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997).
[CrossRef]

Rosen, M. A.

Rosner, G. L.

M. W. Dewhirst, E. T. Ong, G. L. Rosner, S. W. Rehmus, S. Shan, R. D. Braun, D. M. Brizel, and T. W. Secomb, “Arteriolar oxygenation in tumour and subcutaneous arterioles: Effects of inspired air oxygen content,” Br. J. Cancer Suppl. 27, S241-S246 (1996).
[PubMed]

Sassaroli, A.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

Saunders, M. I.

J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997).
[CrossRef]

Schmitz, C. H.

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Schnall, M. D.

Scholz, U.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771-1782 (1998).
[PubMed]

Schutz, O.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

Schweiger, M.

Secomb, T. W.

M. W. Dewhirst, E. T. Ong, G. L. Rosner, S. W. Rehmus, S. Shan, R. D. Braun, D. M. Brizel, and T. W. Secomb, “Arteriolar oxygenation in tumour and subcutaneous arterioles: Effects of inspired air oxygen content,” Br. J. Cancer Suppl. 27, S241-S246 (1996).
[PubMed]

Seibyl, J.

I. G. Zubal, S. S. Spencer, K. Imam, J. Seibyl, E. O. Smith, G. Wisniewski, and P. B. Hoffer, “Difference images calculated from ictal and interictal technetium-99 m-HMPAO SPECT scans of epilepsy,” J. Nucl. Med. 36, 684-689 (1995).
[PubMed]

Semmlow, J. L.

Z. X. Guo, S. K. Wan, D. A. August, J. P. Ying, S. M. Dunn, and J. L. Semmlow, “Optical imaging of breast tumor through temporal log-slope difference mappings,” Comput. Biol. Med. 36, 209-223 (2006).
[PubMed]

Sevick-Muraca, E. M.

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), pp. 59-66.

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and, physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420-4425 (2001).
[CrossRef] [PubMed]

Shan, S.

M. W. Dewhirst, E. T. Ong, G. L. Rosner, S. W. Rehmus, S. Shan, R. D. Braun, D. M. Brizel, and T. W. Secomb, “Arteriolar oxygenation in tumour and subcutaneous arterioles: Effects of inspired air oxygen content,” Br. J. Cancer Suppl. 27, S241-S246 (1996).
[PubMed]

Siebold, H.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

Smith, E. O.

I. G. Zubal, S. S. Spencer, K. Imam, J. Seibyl, E. O. Smith, G. Wisniewski, and P. B. Hoffer, “Difference images calculated from ictal and interictal technetium-99 m-HMPAO SPECT scans of epilepsy,” J. Nucl. Med. 36, 684-689 (1995).
[PubMed]

Soho, S.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Solomon, W. B.

Song, X. M.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Spencer, S. S.

I. G. Zubal, S. S. Spencer, K. Imam, J. Seibyl, E. O. Smith, G. Wisniewski, and P. B. Hoffer, “Difference images calculated from ictal and interictal technetium-99 m-HMPAO SPECT scans of epilepsy,” J. Nucl. Med. 36, 684-689 (1995).
[PubMed]

Srinivasan, S.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Taga, G.

G. Taga, K. Asakawa, A. Maki, Y. Konishi, and H. Koizumi, “Brain imaging in awake infants by near-infrared optical topography,” Proc. Natl. Acad. Sci. USA 100, 10722-10727 (2003).
[CrossRef] [PubMed]

Taylor, N. J.

J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997).
[CrossRef]

Thomas, R. D.

P. D. Gatehouse, T. He, B. K. Puri, R. D. Thomas, D. Resnick, and G. M. Bydder, “Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones,” Br. J. Radiol. 77, 641-647 (2004).
[CrossRef] [PubMed]

Thoumine, M.

J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997).
[CrossRef]

Tosteson, T. D.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Tromberg, B.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420-4425 (2001).
[CrossRef] [PubMed]

Tromberg, B. J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and, physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), pp. 59-66.

van der Kogel, A. J.

M. Rijpkema, J. H. Kaanders, F. B. Joosten, A. J. van der Kogel, and A. Heerschap, “Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys., Suppl. 53, 1185-1191 (2002).
[CrossRef]

van der Zee, P.

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9-20 (1993).
[PubMed]

Vanderzee, P.

Villringer, A.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771-1782 (1998).
[PubMed]

Vine, H. S.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology (Oak Brook, Ill.) 237, 57-66 (2005).

Vogel, A. J.

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165-181 (2006).
[CrossRef] [PubMed]

Wan, S. K.

Z. X. Guo, S. K. Wan, D. A. August, J. P. Ying, S. M. Dunn, and J. L. Semmlow, “Optical imaging of breast tumor through temporal log-slope difference mappings,” Comput. Biol. Med. 36, 209-223 (2006).
[PubMed]

Watson, N. A.

N. A. Watson, S. C. Beards, N. Altaf, A. Kassner, and A. Jackson, “The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase-contrast angiography,” Eur. J. Anaesthesiol. 17, 152-159 (2000).
[PubMed]

Wells, P. N. T.

H. Key, E. R. Davies, P. C. Jackson, and P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579-590 (1991).
[CrossRef] [PubMed]

Wilcox, T.

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11, 361-370 (2008).
[CrossRef] [PubMed]

Wisniewski, G.

I. G. Zubal, S. S. Spencer, K. Imam, J. Seibyl, E. O. Smith, G. Wisniewski, and P. B. Hoffer, “Difference images calculated from ictal and interictal technetium-99 m-HMPAO SPECT scans of epilepsy,” J. Nucl. Med. 36, 684-689 (1995).
[PubMed]

Woods, R.

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11, 361-370 (2008).
[CrossRef] [PubMed]

Wruck, E.

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11, 361-370 (2008).
[CrossRef] [PubMed]

Xu, C.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology (Oak Brook, Ill.) 237, 57-66 (2005).

Ying, J. P.

Z. X. Guo, S. K. Wan, D. A. August, J. P. Ying, S. M. Dunn, and J. L. Semmlow, “Optical imaging of breast tumor through temporal log-slope difference mappings,” Comput. Biol. Med. 36, 209-223 (2006).
[PubMed]

Yodh, A. G.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716 (2007).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Zhu, Q.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology (Oak Brook, Ill.) 237, 57-66 (2005).

Zubal, I. G.

I. G. Zubal, S. S. Spencer, K. Imam, J. Seibyl, E. O. Smith, G. Wisniewski, and P. B. Hoffer, “Difference images calculated from ictal and interictal technetium-99 m-HMPAO SPECT scans of epilepsy,” J. Nucl. Med. 36, 684-689 (1995).
[PubMed]

Adv. Exp. Med. Biol.

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9-20 (1993).
[PubMed]

Appl. Opt.

Br. J. Cancer

D. M. Brizel, S. Lin, J. L. Johnson, J. Brooks, M. W. Dewhirst, and C. A. Piantadosi, “The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation,” Br. J. Cancer 72, 1120-1124 (1995).
[CrossRef] [PubMed]

Br. J. Cancer Suppl.

M. W. Dewhirst, E. T. Ong, G. L. Rosner, S. W. Rehmus, S. Shan, R. D. Braun, D. M. Brizel, and T. W. Secomb, “Arteriolar oxygenation in tumour and subcutaneous arterioles: Effects of inspired air oxygen content,” Br. J. Cancer Suppl. 27, S241-S246 (1996).
[PubMed]

Br. J. Radiol.

P. D. Gatehouse, T. He, B. K. Puri, R. D. Thomas, D. Resnick, and G. M. Bydder, “Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones,” Br. J. Radiol. 77, 641-647 (2004).
[CrossRef] [PubMed]

Can. J. Physiol. Pharmacol.

S. D. Milone, G. E. Newton, and J. D. Parker, “Hemodynamic and biochemical effects of 100% oxygen breathing in humans,” Can. J. Physiol. Pharmacol. 77, 124-130 (1999).
[CrossRef] [PubMed]

Comput. Biol. Med.

Z. X. Guo, S. K. Wan, D. A. August, J. P. Ying, S. M. Dunn, and J. L. Semmlow, “Optical imaging of breast tumor through temporal log-slope difference mappings,” Comput. Biol. Med. 36, 209-223 (2006).
[PubMed]

Dev. Sci.

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11, 361-370 (2008).
[CrossRef] [PubMed]

Eur. J. Anaesthesiol.

N. A. Watson, S. C. Beards, N. Altaf, A. Kassner, and A. Jackson, “The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase-contrast angiography,” Eur. J. Anaesthesiol. 17, 152-159 (2000).
[PubMed]

Int. J. Radiat. Oncol. Biol. Phys.

J. L. Lanzen, R. D. Braun, A. L. Ong, and M. W. Dewhirst, “Variability in blood flow and pO2 in tumors in response to carbogen breathing,” Int. J. Radiat. Oncol. Biol. Phys. 42, 855-859 (1998).
[CrossRef] [PubMed]

Int. J. Radiat. Oncol. Biol. Phys. Suppl.

J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997).
[CrossRef]

Int. J. Radiat. Oncol. Biol. Phys., Suppl.

M. Rijpkema, J. H. Kaanders, F. B. Joosten, A. J. van der Kogel, and A. Heerschap, “Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys., Suppl. 53, 1185-1191 (2002).
[CrossRef]

J Biomed. Opt.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J Biomed. Opt. 11, 064016 (2006).
[CrossRef]

J. Biomed. Opt.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and, physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

J. Mammary Gland Biol. Neoplasia

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165-181 (2006).
[CrossRef] [PubMed]

J. Nucl. Med.

I. G. Zubal, S. S. Spencer, K. Imam, J. Seibyl, E. O. Smith, G. Wisniewski, and P. B. Hoffer, “Difference images calculated from ictal and interictal technetium-99 m-HMPAO SPECT scans of epilepsy,” J. Nucl. Med. 36, 684-689 (1995).
[PubMed]

Magn. Reson. Med.

T. Q. Duong, C. Iadecola, and S. G. Kim, “Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow,” Magn. Reson. Med. 45, 61-70 (2001).
[CrossRef] [PubMed]

Nat. Photon.

E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photon. 1, 526-530 (2007).
[CrossRef]

Opt. Express

Phys. Med. Biol.

L. M. Klassen, B. J. MacIntosh, and R. S. Menon, “Influence of hypoxia on wavelength dependence of differential path length and near-infrared quantification,” Phys. Med. Biol. 47, 1573-1589 (2002).
[CrossRef] [PubMed]

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771-1782 (1998).
[PubMed]

H. Key, E. R. Davies, P. C. Jackson, and P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579-590 (1991).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

G. Taga, K. Asakawa, A. Maki, Y. Konishi, and H. Koizumi, “Brain imaging in awake infants by near-infrared optical topography,” Proc. Natl. Acad. Sci. USA 100, 10722-10727 (2003).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420-4425 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Proc. SPIE

K. T. Kotz, K. S. Kalogerakis, W. N. Boenig, K. Amin, and G. W. Faris, “Dynamic imaging of tumor vasculature in rodents: carbogen-induced contrast enhancement,” Proc. SPIE 5312, 273-277 (2004).
[CrossRef]

T. Noponen, D. Kicic, K. Kotilahti, T. Kajava, S. Kahkonen, I. Nissila, P. Merilainen, and T. Katila, “Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain,” Proc. SPIE 5693, 179-190 (2005).
[CrossRef]

Radiology (Oak Brook, Ill.)

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology (Oak Brook, Ill.) 237, 57-66 (2005).

Technol. Cancer Res. Treat.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

Other

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), pp. 59-66.

S. Dixit, T. Le, K. Amin, C. Comstock, and G. Faris, “Cancer detection using infrared transillumination,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper JTuA47.
[CrossRef]

S. Prahl, “Optical absorption of hemoglobin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/hemoglobin/index.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic drawing of the instrument and (b) photograph of the actual instrument. In the photograph, the camera is to the right while the LEDs are mounted inside the black box to the left. The two spot mammography paddles are seen in side view.

Fig. 2
Fig. 2

(a) Nonrebreathing circuit: the reservoir bag inflates when gas is delivered. The exhaled air is released via the one way T-valve and does not reenter the breathing circuit. (b) Bain’s circuit: there is no reservoir bag in this circuit. The gas is delivered through the inner tube shown in gray. The exhaled air is released to room air and does not reenter the circuit.

Fig. 3
Fig. 3

(a) Raw baseline image acquired by the camera at 734 nm . Five baseline images taken in succession are averaged, binned, and smoothed in MATLAB. Blood vessels are clearly imaged by the instrument. (b) Raw transient image acquired by the camera when the volunteer inhales carbogen gas. There is an increase in transmitted intensity. The image has been binned and smoothed in MATLAB. (c)  Natural log image of ( a ) natural log image of ( b ) , i.e., the difference image. The region of interest is denoted by a dotted rectangle.

Fig. 4
Fig. 4

Relative concentration changes in [Hb] and [ Hb O 2 ] observed in a control experiment (thin solid line) during which volunteer #1 inhaled air. Relative concentration changes in the same quantities when the same volunteer inhaled carbogen (dotted and bold lines) are also shown. Data from both wavelength pairs overlap considerably. During the control experiment some variations are seen in Δ [ Hb O 2 ] , whereas negligible changes are noted in Δ [ Hb ] . During the inhalation session, a marked decrease is noted in Δ [ Hb ] . See the text for details. The regions of gas administration are shown in bold. The optical path length L for wavelength pair 1 is for 813 nm , and for wavelength pair 2 it is for 830 nm .

Fig. 5
Fig. 5

Relative concentration changes in [Hb] and [ Hb O 2 ] observed in an experiment where volunteer #2 inhaled carbogen. A marked decrease is noted in Δ [ Hb ] . See the text for details. The regions of gas administration are shown in bold. Data from the capnometer and pulse oximeter are displayed as end tidal CO 2 percent values, inspired CO 2 percent values, and percent O 2 saturation ( Sp O 2 % ). All three quantities are seen to increase during carbogen inhalation.

Fig. 6
Fig. 6

Relative concentration changes in [Hb] and [ Hb O 2 ] observed in an experiment where volunteer #2 inhaled air with 5 % CO 2 . Changes in Δ [ Hb ] are minor. See the text for details. The regions of gas administration are shown in bold. Data from the capnometer and pulse oximeter are displayed as end tidal CO 2 percent values, inspired CO 2 percent values and percent O 2 saturation ( Sp O 2 % ). The first two are seen to increase during inhalation of the air plus 5% CO 2 mixture. The Sp O 2 % value does not increase because there is no increase in O 2 compared to ambient air in this gas mixture.

Fig. 7
Fig. 7

Relative concentration changes in [Hb] and [ Hb O 2 ] observed in an experiment where volunteer #3 inhaled carbogen gas. Changes in Δ [ Hb ] are dramatic and show a negative trend. Significant oscillations are also seen in Δ [ Hb O 2 ] values. See the text for details. The regions of gas administration are shown in bold. Data from the capnometer and pulse oximeter are displayed as end tidal CO 2 percent values, inspired CO 2 percent values, and percent O 2 saturation ( Sp O 2 % ). All three quantities increase during carbogen inhalation and return to baseline values once the gas inhalation is terminated.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( Δ [ Hb ] Δ [ Hb O 2 ] ) = 1 ln ( 10 ) ( ε Hb λ 1 ε Hb O 2 λ 1 ε Hb λ 2 ε Hb O 2 λ 2 ) - 1 ( 1 L λ 1 ln ( I B I T ) λ 1 1 L λ 2 ln ( I B I T ) λ 2 ) .
Δ Hb 1 = 1 2.303 L 813 [ 0.4580 L 680 L 813 ln ( I B I T ) 680 0.1451 ln ( I B I T ) 813 ] ,
Δ Hb O 2 1 = 1 2.303 L 813 [ 0.3708 L 680 L 813 ln ( I B I T ) 680 + 1.2591 ln ( I B I T ) 813 ] ,
Δ Hb 2 = 1 2.303 L 830 [ 1.2313 L 734 L 830 ln ( I B I T ) 734 0.5153 ln ( I B I T ) 830 ] ,
Δ Hb O 2 2 = 1 2.303 L 830 [ 0.8761 L 734 L 830 ln ( I B I T ) 734 + 1.3933 ln ( I B I T ) 830 ] .

Metrics