Abstract

A small-animal multimodality tomography system dedicated to the coregistration of fluorescence optical signal and x-ray measurements has been developed in our laboratory. The purpose of such a system is to offer the possibility of getting in vivo anatomical and functional information simultaneously. Moreover, anatomical measurements can be used as a regularization factor to achieve more accurate reconstructions of the biodistribution of fluorochromes and to speed up treatment. A dedicated acquisition protocol has been established, and the methodology of the reconstruction of the three-dimensional distribution of the biomarkers under cylindrical geometry consistent with classic computed tomography has been implemented. A phantom study was conducted to evaluate and to fix the parameters for the coregistration. These test experiments were reproduced by considering anesthetized mice that had thin glass tubes containing fluorochromes inserted into their esophagus. The instrument is also used for an in vivo biological study conducted on mice with lung tumors, tagged with near-infrared optical probes (targeting probes such as Transferin-AlexaFluor750).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA 101, 12294-12299 (2004).
    [CrossRef] [PubMed]
  2. J. Deguchi, M. Aikawa, C. H. Tung, E. Aikawa, D. E. Kim, V. Ntziachristos, R. Weissleder, and P. Libby, “Inflammation in atherosclerosis--visualizing matrix metalloproteinase action in macrophages in vivo,” Circulation 114, 55-62 (2006).
    [CrossRef] [PubMed]
  3. K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Delivery Rev. 57, 1087-1108 (2005).
    [CrossRef]
  4. A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
    [CrossRef]
  5. R. G. Blasberg, “In vivo molecular-genetic imaging: multi-modality nuclear and optical combinations,” Nucl. Med. Biol. 30, 879-888(2003).
    [CrossRef] [PubMed]
  6. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
    [CrossRef] [PubMed]
  7. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002).
    [CrossRef] [PubMed]
  8. B. Brooksby, B. W. Pogue, S. D. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006).
    [CrossRef] [PubMed]
  9. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
    [CrossRef] [PubMed]
  10. Q. Zhu, T. Durduran, V. Ntziachristos, M. Holboke, and A. G. Yodh, “Imager that combines near-infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050-1052 (1999).
    [CrossRef]
  11. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237-247 (2000).
    [CrossRef] [PubMed]
  12. G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. USA 102, 18252-18257(2005).
    [CrossRef] [PubMed]
  13. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950-2961 (1999).
    [CrossRef]
  14. Y. Zhang, D. H. Brooks, and D. A. Boas, “A haemodynamic response function model in spatio-temporal diffuse optical tomography,” Phys. Med. Biol. 50, 4625-4644 (2005).
    [CrossRef] [PubMed]
  15. A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt. 44, 1948-1956 (2005).
    [CrossRef] [PubMed]
  16. A. Da Silva, M. Leabad, T. Bordy, J.-M. Dinten, Ph. Peltié, and Ph. Rizo, “Design of a small animal multimodality tomographer for x-ray and optical coupling: theory and experiments,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 118-121(2007).
    [CrossRef]
  17. P. Rizo, P. Grangeat and R. Guillemaud, “Geometric calibration for multiple-head cone-beam SPECT system,” IEEE Trans. Nucl. Sci. 41, 2748-2757 (1994).
    [CrossRef]
  18. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531-1560 (1992).
    [CrossRef] [PubMed]
  19. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon, 1959), Chap. 14.
  20. H. S. Carslaw and J. C. Jaeger, “The determination of Green's function for the equation of the conduction of heat in cylindrical coordinates by the Laplace transformation,” J. Lond. Math. Soc. s1-15, 273-281 (1940).
    [CrossRef]
  21. A. C. Kak and M. Slanley, Principles of Computerized Tomographic Imaging (IEEE, 1988).
  22. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1, 612-619 (1984).
    [CrossRef]
  23. A. I. Filipenko and I. Nevludov, “Core position identification at the optical fibers connection by an autoconvolution method,” Proc. SPIE 5582, 269-277 (2004).
  24. L. Hervé, A. Da Silva, A. Koenig, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltié, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 60-63 (2007).
    [CrossRef]
  25. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896-4906 (2007).
    [CrossRef] [PubMed]
  26. A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J.-M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46, 2131-2137(2007).
    [CrossRef] [PubMed]

2007 (5)

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
[CrossRef]

A. Da Silva, M. Leabad, T. Bordy, J.-M. Dinten, Ph. Peltié, and Ph. Rizo, “Design of a small animal multimodality tomographer for x-ray and optical coupling: theory and experiments,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 118-121(2007).
[CrossRef]

L. Hervé, A. Da Silva, A. Koenig, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltié, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 60-63 (2007).
[CrossRef]

A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J.-M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46, 2131-2137(2007).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896-4906 (2007).
[CrossRef] [PubMed]

2006 (2)

J. Deguchi, M. Aikawa, C. H. Tung, E. Aikawa, D. E. Kim, V. Ntziachristos, R. Weissleder, and P. Libby, “Inflammation in atherosclerosis--visualizing matrix metalloproteinase action in macrophages in vivo,” Circulation 114, 55-62 (2006).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. D. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006).
[CrossRef] [PubMed]

2005 (6)

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Delivery Rev. 57, 1087-1108 (2005).
[CrossRef]

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. USA 102, 18252-18257(2005).
[CrossRef] [PubMed]

Y. Zhang, D. H. Brooks, and D. A. Boas, “A haemodynamic response function model in spatio-temporal diffuse optical tomography,” Phys. Med. Biol. 50, 4625-4644 (2005).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt. 44, 1948-1956 (2005).
[CrossRef] [PubMed]

2004 (2)

A. I. Filipenko and I. Nevludov, “Core position identification at the optical fibers connection by an autoconvolution method,” Proc. SPIE 5582, 269-277 (2004).

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA 101, 12294-12299 (2004).
[CrossRef] [PubMed]

2003 (1)

R. G. Blasberg, “In vivo molecular-genetic imaging: multi-modality nuclear and optical combinations,” Nucl. Med. Biol. 30, 879-888(2003).
[CrossRef] [PubMed]

2002 (1)

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

2000 (1)

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237-247 (2000).
[CrossRef] [PubMed]

1999 (2)

1994 (1)

P. Rizo, P. Grangeat and R. Guillemaud, “Geometric calibration for multiple-head cone-beam SPECT system,” IEEE Trans. Nucl. Sci. 41, 2748-2757 (1994).
[CrossRef]

1992 (1)

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531-1560 (1992).
[CrossRef] [PubMed]

1988 (1)

A. C. Kak and M. Slanley, Principles of Computerized Tomographic Imaging (IEEE, 1988).

1984 (1)

1959 (1)

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon, 1959), Chap. 14.

1940 (1)

H. S. Carslaw and J. C. Jaeger, “The determination of Green's function for the equation of the conduction of heat in cylindrical coordinates by the Laplace transformation,” J. Lond. Math. Soc. s1-15, 273-281 (1940).
[CrossRef]

Aikawa, E.

J. Deguchi, M. Aikawa, C. H. Tung, E. Aikawa, D. E. Kim, V. Ntziachristos, R. Weissleder, and P. Libby, “Inflammation in atherosclerosis--visualizing matrix metalloproteinase action in macrophages in vivo,” Circulation 114, 55-62 (2006).
[CrossRef] [PubMed]

Aikawa, M.

J. Deguchi, M. Aikawa, C. H. Tung, E. Aikawa, D. E. Kim, V. Ntziachristos, R. Weissleder, and P. Libby, “Inflammation in atherosclerosis--visualizing matrix metalloproteinase action in macrophages in vivo,” Circulation 114, 55-62 (2006).
[CrossRef] [PubMed]

Arridge, S. R.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531-1560 (1992).
[CrossRef] [PubMed]

Berger, M.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
[CrossRef]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896-4906 (2007).
[CrossRef] [PubMed]

A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J.-M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46, 2131-2137(2007).
[CrossRef] [PubMed]

L. Hervé, A. Da Silva, A. Koenig, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltié, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 60-63 (2007).
[CrossRef]

Blasberg, R. G.

R. G. Blasberg, “In vivo molecular-genetic imaging: multi-modality nuclear and optical combinations,” Nucl. Med. Biol. 30, 879-888(2003).
[CrossRef] [PubMed]

Boas, D. A.

Y. Zhang, D. H. Brooks, and D. A. Boas, “A haemodynamic response function model in spatio-temporal diffuse optical tomography,” Phys. Med. Biol. 50, 4625-4644 (2005).
[CrossRef] [PubMed]

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt. 44, 1948-1956 (2005).
[CrossRef] [PubMed]

Boccara, A. C.

Bogdanov, A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Bordy, T.

A. Da Silva, M. Leabad, T. Bordy, J.-M. Dinten, Ph. Peltié, and Ph. Rizo, “Design of a small animal multimodality tomographer for x-ray and optical coupling: theory and experiments,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 118-121(2007).
[CrossRef]

Boutet, J.

A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J.-M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46, 2131-2137(2007).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896-4906 (2007).
[CrossRef] [PubMed]

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
[CrossRef]

L. Hervé, A. Da Silva, A. Koenig, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltié, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 60-63 (2007).
[CrossRef]

Boverman, G.

Brooks, D.

Brooks, D. H.

Y. Zhang, D. H. Brooks, and D. A. Boas, “A haemodynamic response function model in spatio-temporal diffuse optical tomography,” Phys. Med. Biol. 50, 4625-4644 (2005).
[CrossRef] [PubMed]

Brooksby, B.

B. Brooksby, B. W. Pogue, S. D. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006).
[CrossRef] [PubMed]

Brukilacchio, T. J.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Butler, J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237-247 (2000).
[CrossRef] [PubMed]

Carslaw, H. S.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon, 1959), Chap. 14.

H. S. Carslaw and J. C. Jaeger, “The determination of Green's function for the equation of the conduction of heat in cylindrical coordinates by the Laplace transformation,” J. Lond. Math. Soc. s1-15, 273-281 (1940).
[CrossRef]

Chance, B.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237-247 (2000).
[CrossRef] [PubMed]

Chaves, T.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Choe, R.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Chorlton, M.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Coll, J.-L.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
[CrossRef]

Cope, M.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531-1560 (1992).
[CrossRef] [PubMed]

Corlu, A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Czerniecki, B. J.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Da Silva, A.

L. Hervé, A. Da Silva, A. Koenig, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltié, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 60-63 (2007).
[CrossRef]

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
[CrossRef]

A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J.-M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46, 2131-2137(2007).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896-4906 (2007).
[CrossRef] [PubMed]

A. Da Silva, M. Leabad, T. Bordy, J.-M. Dinten, Ph. Peltié, and Ph. Rizo, “Design of a small animal multimodality tomographer for x-ray and optical coupling: theory and experiments,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 118-121(2007).
[CrossRef]

Davis, L. C.

Deguchi, J.

J. Deguchi, M. Aikawa, C. H. Tung, E. Aikawa, D. E. Kim, V. Ntziachristos, R. Weissleder, and P. Libby, “Inflammation in atherosclerosis--visualizing matrix metalloproteinase action in macrophages in vivo,” Circulation 114, 55-62 (2006).
[CrossRef] [PubMed]

Dehghani, H.

B. Brooksby, B. W. Pogue, S. D. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006).
[CrossRef] [PubMed]

Delpy, D. T.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531-1560 (1992).
[CrossRef] [PubMed]

DeMichele, A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Dinten, J. M.

Dinten, J.-M.

A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J.-M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46, 2131-2137(2007).
[CrossRef] [PubMed]

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
[CrossRef]

A. Da Silva, M. Leabad, T. Bordy, J.-M. Dinten, Ph. Peltié, and Ph. Rizo, “Design of a small animal multimodality tomographer for x-ray and optical coupling: theory and experiments,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 118-121(2007).
[CrossRef]

L. Hervé, A. Da Silva, A. Koenig, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltié, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 60-63 (2007).
[CrossRef]

Durduran, T.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Q. Zhu, T. Durduran, V. Ntziachristos, M. Holboke, and A. G. Yodh, “Imager that combines near-infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050-1052 (1999).
[CrossRef]

Feldkamp, L. A.

Filipenko, A. I.

A. I. Filipenko and I. Nevludov, “Core position identification at the optical fibers connection by an autoconvolution method,” Proc. SPIE 5582, 269-277 (2004).

Fishkin, J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237-247 (2000).
[CrossRef] [PubMed]

Fraker, D. L.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Grangeat, P.

P. Rizo, P. Grangeat and R. Guillemaud, “Geometric calibration for multiple-head cone-beam SPECT system,” IEEE Trans. Nucl. Sci. 41, 2748-2757 (1994).
[CrossRef]

Graves, E.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Grimm, J.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. USA 102, 18252-18257(2005).
[CrossRef] [PubMed]

Grosicka-Koptyra, M.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Guillemaud, R.

P. Rizo, P. Grangeat and R. Guillemaud, “Geometric calibration for multiple-head cone-beam SPECT system,” IEEE Trans. Nucl. Sci. 41, 2748-2757 (1994).
[CrossRef]

Hervé, L.

L. Hervé, A. Da Silva, A. Koenig, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltié, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 60-63 (2007).
[CrossRef]

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
[CrossRef]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896-4906 (2007).
[CrossRef] [PubMed]

Hillman, E.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Hillman, E. M. C.

Holboke, M.

Holboke, M. J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237-247 (2000).
[CrossRef] [PubMed]

Jaeger, J. C.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon, 1959), Chap. 14.

H. S. Carslaw and J. C. Jaeger, “The determination of Green's function for the equation of the conduction of heat in cylindrical coordinates by the Laplace transformation,” J. Lond. Math. Soc. s1-15, 273-281 (1940).
[CrossRef]

Jiang, S. D.

B. Brooksby, B. W. Pogue, S. D. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006).
[CrossRef] [PubMed]

Josephson, L.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Josser, V.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
[CrossRef]

Kak, A. C.

A. C. Kak and M. Slanley, Principles of Computerized Tomographic Imaging (IEEE, 1988).

Kambara, H.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. USA 102, 18252-18257(2005).
[CrossRef] [PubMed]

Kidney, D.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237-247 (2000).
[CrossRef] [PubMed]

Kilmer, M. E.

Kim, D. E.

J. Deguchi, M. Aikawa, C. H. Tung, E. Aikawa, D. E. Kim, V. Ntziachristos, R. Weissleder, and P. Libby, “Inflammation in atherosclerosis--visualizing matrix metalloproteinase action in macrophages in vivo,” Circulation 114, 55-62 (2006).
[CrossRef] [PubMed]

Koenig, A.

L. Hervé, A. Da Silva, A. Koenig, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltié, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 60-63 (2007).
[CrossRef]

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
[CrossRef]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896-4906 (2007).
[CrossRef] [PubMed]

Kogel, C.

B. Brooksby, B. W. Pogue, S. D. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006).
[CrossRef] [PubMed]

Konecky, S. D.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Kopans, D. B.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Kress, J. W.

Laidevant, A.

Leabad, M.

A. Da Silva, M. Leabad, T. Bordy, J.-M. Dinten, Ph. Peltié, and Ph. Rizo, “Design of a small animal multimodality tomographer for x-ray and optical coupling: theory and experiments,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 118-121(2007).
[CrossRef]

Lee, K.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Li, A.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt. 44, 1948-1956 (2005).
[CrossRef] [PubMed]

Li, X.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237-247 (2000).
[CrossRef] [PubMed]

Libby, P.

J. Deguchi, M. Aikawa, C. H. Tung, E. Aikawa, D. E. Kim, V. Ntziachristos, R. Weissleder, and P. Libby, “Inflammation in atherosclerosis--visualizing matrix metalloproteinase action in macrophages in vivo,” Circulation 114, 55-62 (2006).
[CrossRef] [PubMed]

Licha, K.

K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Delivery Rev. 57, 1087-1108 (2005).
[CrossRef]

McBride, T. O.

Miller, E. L.

Moore, R. H.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Nevludov, I.

A. I. Filipenko and I. Nevludov, “Core position identification at the optical fibers connection by an autoconvolution method,” Proc. SPIE 5582, 269-277 (2004).

Ntziachristos, V.

J. Deguchi, M. Aikawa, C. H. Tung, E. Aikawa, D. E. Kim, V. Ntziachristos, R. Weissleder, and P. Libby, “Inflammation in atherosclerosis--visualizing matrix metalloproteinase action in macrophages in vivo,” Circulation 114, 55-62 (2006).
[CrossRef] [PubMed]

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. USA 102, 18252-18257(2005).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA 101, 12294-12299 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

Q. Zhu, T. Durduran, V. Ntziachristos, M. Holboke, and A. G. Yodh, “Imager that combines near-infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050-1052 (1999).
[CrossRef]

Olbrich, C.

K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Delivery Rev. 57, 1087-1108 (2005).
[CrossRef]

Osterberg, U. L.

Paulsen, K. D.

B. Brooksby, B. W. Pogue, S. D. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950-2961 (1999).
[CrossRef]

Peltié, P.

L. Hervé, A. Da Silva, A. Koenig, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltié, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 60-63 (2007).
[CrossRef]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896-4906 (2007).
[CrossRef] [PubMed]

Peltié, Ph.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
[CrossRef]

A. Da Silva, M. Leabad, T. Bordy, J.-M. Dinten, Ph. Peltié, and Ph. Rizo, “Design of a small animal multimodality tomographer for x-ray and optical coupling: theory and experiments,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 118-121(2007).
[CrossRef]

Pogue, B. W.

B. Brooksby, B. W. Pogue, S. D. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950-2961 (1999).
[CrossRef]

Poplack, S. P.

B. Brooksby, B. W. Pogue, S. D. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006).
[CrossRef] [PubMed]

Prewitt, J.

Rafferty, E.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Ripoll, J.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. USA 102, 18252-18257(2005).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Rizo, P.

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896-4906 (2007).
[CrossRef] [PubMed]

L. Hervé, A. Da Silva, A. Koenig, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltié, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 60-63 (2007).
[CrossRef]

P. Rizo, P. Grangeat and R. Guillemaud, “Geometric calibration for multiple-head cone-beam SPECT system,” IEEE Trans. Nucl. Sci. 41, 2748-2757 (1994).
[CrossRef]

Rizo, Ph.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
[CrossRef]

A. Da Silva, M. Leabad, T. Bordy, J.-M. Dinten, Ph. Peltié, and Ph. Rizo, “Design of a small animal multimodality tomographer for x-ray and optical coupling: theory and experiments,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 118-121(2007).
[CrossRef]

Rosen, M. A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Saeki, Y.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. USA 102, 18252-18257(2005).
[CrossRef] [PubMed]

Schellenberger, E. A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Schnall, M. D.

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

Shah, N.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237-247 (2000).
[CrossRef] [PubMed]

Shih, H.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. USA 102, 18252-18257(2005).
[CrossRef] [PubMed]

Slanley, M.

A. C. Kak and M. Slanley, Principles of Computerized Tomographic Imaging (IEEE, 1988).

Srinivasan, S.

B. Brooksby, B. W. Pogue, S. D. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006).
[CrossRef] [PubMed]

Stott, J. J.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Texier, I.

L. Hervé, A. Da Silva, A. Koenig, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltié, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 60-63 (2007).
[CrossRef]

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
[CrossRef]

Tosteson, T. D.

B. Brooksby, B. W. Pogue, S. D. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006).
[CrossRef] [PubMed]

Tromberg, B. J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237-247 (2000).
[CrossRef] [PubMed]

Tung, C. H.

J. Deguchi, M. Aikawa, C. H. Tung, E. Aikawa, D. E. Kim, V. Ntziachristos, R. Weissleder, and P. Libby, “Inflammation in atherosclerosis--visualizing matrix metalloproteinase action in macrophages in vivo,” Circulation 114, 55-62 (2006).
[CrossRef] [PubMed]

Weaver, J.

B. Brooksby, B. W. Pogue, S. D. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006).
[CrossRef] [PubMed]

Weissleder, R.

J. Deguchi, M. Aikawa, C. H. Tung, E. Aikawa, D. E. Kim, V. Ntziachristos, R. Weissleder, and P. Libby, “Inflammation in atherosclerosis--visualizing matrix metalloproteinase action in macrophages in vivo,” Circulation 114, 55-62 (2006).
[CrossRef] [PubMed]

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. USA 102, 18252-18257(2005).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Wu, T.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Yessayan, D.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Yodh, A. G.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237-247 (2000).
[CrossRef] [PubMed]

Q. Zhu, T. Durduran, V. Ntziachristos, M. Holboke, and A. G. Yodh, “Imager that combines near-infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050-1052 (1999).
[CrossRef]

Zacharakis, G.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. USA 102, 18252-18257(2005).
[CrossRef] [PubMed]

Zhang, Q.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt. 44, 1948-1956 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Zhu, Q.

Adv. Drug Delivery Rev. (1)

K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Delivery Rev. 57, 1087-1108 (2005).
[CrossRef]

Appl. Opt. (4)

Circulation (1)

J. Deguchi, M. Aikawa, C. H. Tung, E. Aikawa, D. E. Kim, V. Ntziachristos, R. Weissleder, and P. Libby, “Inflammation in atherosclerosis--visualizing matrix metalloproteinase action in macrophages in vivo,” Circulation 114, 55-62 (2006).
[CrossRef] [PubMed]

IEEE Trans. Nucl. Sci. (1)

P. Rizo, P. Grangeat and R. Guillemaud, “Geometric calibration for multiple-head cone-beam SPECT system,” IEEE Trans. Nucl. Sci. 41, 2748-2757 (1994).
[CrossRef]

J Biomed Opt. (1)

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237-247 (2000).
[CrossRef] [PubMed]

J. Lond. Math. Soc. (1)

H. S. Carslaw and J. C. Jaeger, “The determination of Green's function for the equation of the conduction of heat in cylindrical coordinates by the Laplace transformation,” J. Lond. Math. Soc. s1-15, 273-281 (1940).
[CrossRef]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Neoplasia (1)

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (3)

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, Ph. Peltié, Ph. Rizo, V. Josser, and J.-L. Coll, “Whole body small animal examination with a diffuse optical tomography instrument,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 56-59(2007).
[CrossRef]

A. Da Silva, M. Leabad, T. Bordy, J.-M. Dinten, Ph. Peltié, and Ph. Rizo, “Design of a small animal multimodality tomographer for x-ray and optical coupling: theory and experiments,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 118-121(2007).
[CrossRef]

L. Hervé, A. Da Silva, A. Koenig, J.-M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltié, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 60-63 (2007).
[CrossRef]

Nucl. Med. Biol. (1)

R. G. Blasberg, “In vivo molecular-genetic imaging: multi-modality nuclear and optical combinations,” Nucl. Med. Biol. 30, 879-888(2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (2)

Y. Zhang, D. H. Brooks, and D. A. Boas, “A haemodynamic response function model in spatio-temporal diffuse optical tomography,” Phys. Med. Biol. 50, 4625-4644 (2005).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531-1560 (1992).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (3)

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA 101, 12294-12299 (2004).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. D. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006).
[CrossRef] [PubMed]

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. USA 102, 18252-18257(2005).
[CrossRef] [PubMed]

Other (3)

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon, 1959), Chap. 14.

A. C. Kak and M. Slanley, Principles of Computerized Tomographic Imaging (IEEE, 1988).

A. I. Filipenko and I. Nevludov, “Core position identification at the optical fibers connection by an autoconvolution method,” Proc. SPIE 5582, 269-277 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Photograph of the experimental bench. Inset, normalized laser power and transmission of the emission filters as a function of the wavelength.

Fig. 2
Fig. 2

Geometric information extraction from 3D x-ray reconstruction. Top, reconstructed slice of the cylindrical holder filled with the index-matching fluid and containing two thin glass tubes, one empty and the other one filled with Alexa 750 fluorochromes. Bottom, density map, in arbitrary units, corresponding to the marked cross section.

Fig. 3
Fig. 3

Left, photograph of the bottom of a cylindrical tube obtained with our objective. Right, sketch of the tube (top view) and the optical system of acquisition (to the right).

Fig. 4
Fig. 4

Photograph of the mask for the determination of the magnification. Four points are placed on the CCD pixelized image for calibration.

Fig. 5
Fig. 5

Left, photograph of the diffusing tube homogeneously illuminated by a white light and a cross section at a given height. Comparison of the normalized curves of self-convolution of the cross section (middle) and of the derivative of the cross section (right) as a function of the pixels of the CCD.

Fig. 6
Fig. 6

Curves representing the evolution of two distinct points (in pixels) of the center of the image during the rotation of the tube as function of the rotation angle.

Fig. 7
Fig. 7

Transformation from the CCD coordinates to the cylindrical coordinates at the surface of the tube.

Fig. 8
Fig. 8

Acquisitions of the images of the different sources during a vertical scan. Bottom left, image of a given source and its profile. Bottom right, comparison of the detection of the position (in pixels) of the source with the method of location of the maximum of the profile (vertical gray solid line) and the method of convolution (vertical gray dotted line).

Fig. 9
Fig. 9

Influence on the optical reconstructions of the varying magnification at the surface of the cylinder: (a) raw fluorescence signal image taken by the CCD camera; (b) left, preprocessed data with a reduced field of view and the selected 15 × 15 detector grid considered for the optical reconstruction obtained by taking into account the nonconstant magnification; right, top and side 2D views of the reconstruction of the distribution of the fluorophores; (c) same as (b) , considering a constant magnification T = T R ; (d) same as (b) , considering a constant magnification T = T O .

Fig. 10
Fig. 10

Influence of the geometrical calibration: (a) top (left) and side (right) 2D views of the reconstruction of the distribution of the fluorophores, taking into account the calibration; (b) same as (a) with no calibration (cylinder perfectly vertical and aligned with the rotation axis).

Fig. 11
Fig. 11

Merging of x-ray (gray scale) and fluorescence reconstructions (color scale) of two thin tubes filled with AlexaFluor 750 fluorochromes (0.5 and 2 μM ): left, 3D view and, middle, 2D top view. Right, evolution of the sum of the reconstructed values stemming from optical fluorescence reconstruction as a function of the measured fluorochromes concentrations.

Fig. 12
Fig. 12

Right, outline of the experiment; left, 3D view of the merging of the reconstructions obtained by x-ray tomography and by fluorescence optical tomography.

Fig. 13
Fig. 13

3D view of the merging of the reconstructions obtained by x-ray tomography and by fluorescence optical tomography.

Fig. 14
Fig. 14

Illustration of the dual-energy principle on a radiograph of a mouse: a combination of high- and low-energy x-ray images (left) allows the recovery of both the skeleton (bones image) and soft tissues (right).

Tables (1)

Tables Icon

Table 1 Calibration Measurements and Their Updated Frequencies

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕ fl ( r s , r d ) Volume G ( λ e , r s , r ) β ( r ) G ( λ f , r , r d ) d r .
G cyl ( λ , r , r ) = 1 D l π m = 1 sin m π z l sin m π z l n = I n ( r q m ) I n ( a q m ) [ I n ( a q m ) K n ( r q m ) K n ( a q m ) I n ( r q m ) ] cos n ( θ θ ) ,
Φ = W × β .
T = [ T R Δ T 1 T R 2 ( A M ) 2 R 2 + Δ T 2 ( A M ) 2 R 2 ] [ 1 + Δ T 2 ( A M ) 2 R 2 ] 1 , Δ T = T R T O .
T = [ T R Δ T 1 T R 2 ( M M p ) 2 R 2 + Δ T 2 ( M M p ) 2 R 2 ] [ 1 + Δ T 2 ( M M p ) 2 R 2 ] 1 .
T O = [ T 1 A ] × B 1 , T R = [ T 1 + A ] × B 1 , A = ( T 1 T 2 ) 1 T 1 2 ( M 1 M p 1 ) 2 R 2 , B = 1 T 2 2 ( M 2 M p 2 ) 2 R 2 1 T 1 2 ( M 1 M p 1 ) 2 R 2 .
z = T ( x ) × O M p , φ = arcsin ( T ( x ) M M p T R R ) + θ .

Metrics