Abstract

Applying localized external displacement to the breast surface can change the interstitial fluid pressure such that regional transient microvascular changes occur in oxygenation and vascular volume. Imaging these dynamic responses over time, while different pressures are applied, could provide selective temporal contrast for cancer relative to the surrounding normal breast. In order to investigate this possibility in normal breast tissue, a near-infrared spectral tomography system was developed that can simultaneously acquire data at three wavelengths with a 15 s time resolution per scan. The system was tested first with heterogeneous blood phantoms. Changes in regional blood concentrations were found to be linearly related to recovered mean hemoglobin concentration (HbT) values (R2=0.9). In a series of volunteer breast imaging exams, data from 17 asymptomatic subjects were acquired under increasing and decreasing breast compression. Calculations show that a 10mm displacement applied to the breast results in surface pressures in the range of 055kPa depending on breast density. The recovered human data indicate that HbT was reduced under compression and the normalized change was significantly correlated to the applied pressure with a p value of 0.005. The maximum HbT decreases in breast tissue were associated with body mass index (BMI), which is a surrogate indicator of breast density. No statistically valid correlations were found between the applied pressure and the changes in tissue oxygen saturation (StO2) or water percentage (H2O) across the range of BMI values studied.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Heldin, K. Rubin, K. Pietras, and A. Östman, “High interstitial fluid pressure--an obstacle in cancer therapy,” Nat. Rev. Cancer 4, 806-813 (2004).
    [CrossRef] [PubMed]
  2. Y. Boucher and R. K. Jain, “Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse,” Cancer Res. 52, 5110-5114 (1992).
    [PubMed]
  3. G. R. D. Saminathan, S. Nathan, J. E. Casas-Ganem, B. H. Hoang, Rebecca Sowers, Rui Yang, A. G. Huvos, R. Gorlick, and J. H. Healey, “Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma,” Clin. Cancer Res. 11, 2389-2397 (2005).
    [CrossRef]
  4. L. E. B. Stuhr, S. Lepsøe, R. Myklebust, H. Wiig, and R. K. Reed, “Fluid pressure in human dermal fibroblast aggregates measured with micropipettes,” Am. J. Physiol.: Cell Physiol. 285, C1101-C1108 (2003).
  5. A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121-4136 (2007).
    [CrossRef] [PubMed]
  6. J. R. Brenner and Y. Parisky, “Alternative breast-imaging approaches,” Radiol. Clin. North Am. 45, 907-923 (2007).
    [CrossRef] [PubMed]
  7. S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212-1214(2003).
    [CrossRef] [PubMed]
  8. S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
    [CrossRef]
  9. B. Wang, S. P. Povoski, X. Cao, D. Sun, and R. X. Xu, “Dynamic schema for near infrared detection of pressure-induced changes in solid tumors,” Appl. Opt. 47, 3053-3063 (2008).
    [CrossRef] [PubMed]
  10. S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
    [PubMed]
  11. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
    [CrossRef] [PubMed]
  12. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
    [PubMed]
  13. S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, S. K. Soho, and W. A. Wells, “Electromagnetic breast imaging--pilot results in women with abnormal mammography,” Radiology (Oak Brook, Ill.) 243 , 350-359(2007).
  14. C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
    [CrossRef] [PubMed]
  15. E. E. Van Houten, J. B. Weaver, M. I. Miga, F. E. Kennedy, and K. D. Paulsen, “Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process,” Med. Phys. 27, 101-107 (2000).
    [CrossRef] [PubMed]
  16. E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, K. D. Paulsen, and J. B. Weaver, “A three-parameter mechanical property reconstruction method for MR-based elastic property imaging,” IEEE Trans. Med. Imaging 24, 311-324 (2005).
    [CrossRef] [PubMed]
  17. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858-1869 (2005).
    [CrossRef] [PubMed]
  18. H. Dehghani, M. Doyley, B. W. pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modeling for image reconstruction in near-infrared tomography,” Phys. Med. Biol. 49, 1131-1145 (2004).
    [CrossRef] [PubMed]
  19. B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968-1970 (2005).
    [CrossRef] [PubMed]
  20. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
    [CrossRef] [PubMed]
  21. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” Proc. Nat. Acad. Sci., U.S.A. 100 (21), 12349-12354 (2003).
    [CrossRef]
  22. A. Poulos and D. McLean, “The application of breast compression in mammography: a new perspective,” Radiography 10, 131-137 (2004).
    [CrossRef]

2008

2007

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121-4136 (2007).
[CrossRef] [PubMed]

J. R. Brenner and Y. Parisky, “Alternative breast-imaging approaches,” Radiol. Clin. North Am. 45, 907-923 (2007).
[CrossRef] [PubMed]

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, S. K. Soho, and W. A. Wells, “Electromagnetic breast imaging--pilot results in women with abnormal mammography,” Radiology (Oak Brook, Ill.) 243 , 350-359(2007).

2006

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[PubMed]

2005

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858-1869 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968-1970 (2005).
[CrossRef] [PubMed]

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, K. D. Paulsen, and J. B. Weaver, “A three-parameter mechanical property reconstruction method for MR-based elastic property imaging,” IEEE Trans. Med. Imaging 24, 311-324 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

G. R. D. Saminathan, S. Nathan, J. E. Casas-Ganem, B. H. Hoang, Rebecca Sowers, Rui Yang, A. G. Huvos, R. Gorlick, and J. H. Healey, “Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma,” Clin. Cancer Res. 11, 2389-2397 (2005).
[CrossRef]

2004

C.-H. Heldin, K. Rubin, K. Pietras, and A. Östman, “High interstitial fluid pressure--an obstacle in cancer therapy,” Nat. Rev. Cancer 4, 806-813 (2004).
[CrossRef] [PubMed]

A. Poulos and D. McLean, “The application of breast compression in mammography: a new perspective,” Radiography 10, 131-137 (2004).
[CrossRef]

H. Dehghani, M. Doyley, B. W. pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modeling for image reconstruction in near-infrared tomography,” Phys. Med. Biol. 49, 1131-1145 (2004).
[CrossRef] [PubMed]

2003

S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212-1214(2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” Proc. Nat. Acad. Sci., U.S.A. 100 (21), 12349-12354 (2003).
[CrossRef]

L. E. B. Stuhr, S. Lepsøe, R. Myklebust, H. Wiig, and R. K. Reed, “Fluid pressure in human dermal fibroblast aggregates measured with micropipettes,” Am. J. Physiol.: Cell Physiol. 285, C1101-C1108 (2003).

2000

E. E. Van Houten, J. B. Weaver, M. I. Miga, F. E. Kennedy, and K. D. Paulsen, “Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process,” Med. Phys. 27, 101-107 (2000).
[CrossRef] [PubMed]

1992

Y. Boucher and R. K. Jain, “Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse,” Cancer Res. 52, 5110-5114 (1992).
[PubMed]

Boas, D.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Boucher, Y.

Y. Boucher and R. K. Jain, “Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse,” Cancer Res. 52, 5110-5114 (1992).
[PubMed]

Brenner, J. R.

J. R. Brenner and Y. Parisky, “Alternative breast-imaging approaches,” Radiol. Clin. North Am. 45, 907-923 (2007).
[CrossRef] [PubMed]

Briest, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Brooksby, B.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968-1970 (2005).
[CrossRef] [PubMed]

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[PubMed]

Cao, X.

Carp, S. A.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Carpenter, C. M.

Casas-Ganem, J. E.

G. R. D. Saminathan, S. Nathan, J. E. Casas-Ganem, B. H. Hoang, Rebecca Sowers, Rui Yang, A. G. Huvos, R. Gorlick, and J. H. Healey, “Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma,” Clin. Cancer Res. 11, 2389-2397 (2005).
[CrossRef]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[PubMed]

Chambers, J. G.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” Proc. Nat. Acad. Sci., U.S.A. 100 (21), 12349-12354 (2003).
[CrossRef]

Chance, B.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Conant, E. F.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Czerniecki, B. J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Darling, A. L.

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121-4136 (2007).
[CrossRef] [PubMed]

Dehghani, H.

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121-4136 (2007).
[CrossRef] [PubMed]

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968-1970 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858-1869 (2005).
[CrossRef] [PubMed]

H. Dehghani, M. Doyley, B. W. pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modeling for image reconstruction in near-infrared tomography,” Phys. Med. Biol. 49, 1131-1145 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” Proc. Nat. Acad. Sci., U.S.A. 100 (21), 12349-12354 (2003).
[CrossRef]

Doyley, M.

H. Dehghani, M. Doyley, B. W. pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modeling for image reconstruction in near-infrared tomography,” Phys. Med. Biol. 49, 1131-1145 (2004).
[CrossRef] [PubMed]

Doyley, M. M.

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121-4136 (2007).
[CrossRef] [PubMed]

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, K. D. Paulsen, and J. B. Weaver, “A three-parameter mechanical property reconstruction method for MR-based elastic property imaging,” IEEE Trans. Med. Imaging 24, 311-324 (2005).
[CrossRef] [PubMed]

Durkin, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[PubMed]

Fang, Q.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Fantini, S.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

Forero, J.

Geng, J.

H. Dehghani, M. Doyley, B. W. pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modeling for image reconstruction in near-infrared tomography,” Phys. Med. Biol. 49, 1131-1145 (2004).
[CrossRef] [PubMed]

Gorlick, R.

G. R. D. Saminathan, S. Nathan, J. E. Casas-Ganem, B. H. Hoang, Rebecca Sowers, Rui Yang, A. G. Huvos, R. Gorlick, and J. H. Healey, “Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma,” Clin. Cancer Res. 11, 2389-2397 (2005).
[CrossRef]

Hartov, A.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, S. K. Soho, and W. A. Wells, “Electromagnetic breast imaging--pilot results in women with abnormal mammography,” Radiology (Oak Brook, Ill.) 243 , 350-359(2007).

Healey, J. H.

G. R. D. Saminathan, S. Nathan, J. E. Casas-Ganem, B. H. Hoang, Rebecca Sowers, Rui Yang, A. G. Huvos, R. Gorlick, and J. H. Healey, “Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma,” Clin. Cancer Res. 11, 2389-2397 (2005).
[CrossRef]

Heffer, E. L.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

Heldin, C.-H.

C.-H. Heldin, K. Rubin, K. Pietras, and A. Östman, “High interstitial fluid pressure--an obstacle in cancer therapy,” Nat. Rev. Cancer 4, 806-813 (2004).
[CrossRef] [PubMed]

Hoang, B. H.

G. R. D. Saminathan, S. Nathan, J. E. Casas-Ganem, B. H. Hoang, Rebecca Sowers, Rui Yang, A. G. Huvos, R. Gorlick, and J. H. Healey, “Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma,” Clin. Cancer Res. 11, 2389-2397 (2005).
[CrossRef]

Hsiang, D.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[PubMed]

Huvos, A. G.

G. R. D. Saminathan, S. Nathan, J. E. Casas-Ganem, B. H. Hoang, Rebecca Sowers, Rui Yang, A. G. Huvos, R. Gorlick, and J. H. Healey, “Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma,” Clin. Cancer Res. 11, 2389-2397 (2005).
[CrossRef]

Hwang, E.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Jain, R. K.

Y. Boucher and R. K. Jain, “Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse,” Cancer Res. 52, 5110-5114 (1992).
[PubMed]

Jiang, S.

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968-1970 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858-1869 (2005).
[CrossRef] [PubMed]

H. Dehghani, M. Doyley, B. W. pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modeling for image reconstruction in near-infrared tomography,” Phys. Med. Biol. 49, 1131-1145 (2004).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212-1214(2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” Proc. Nat. Acad. Sci., U.S.A. 100 (21), 12349-12354 (2003).
[CrossRef]

Kauffman, T.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Kaufman, P. A.

Kennedy, F. E.

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, K. D. Paulsen, and J. B. Weaver, “A three-parameter mechanical property reconstruction method for MR-based elastic property imaging,” IEEE Trans. Med. Imaging 24, 311-324 (2005).
[CrossRef] [PubMed]

E. E. Van Houten, J. B. Weaver, M. I. Miga, F. E. Kennedy, and K. D. Paulsen, “Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process,” Med. Phys. 27, 101-107 (2000).
[CrossRef] [PubMed]

Kogel, C.

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968-1970 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” Proc. Nat. Acad. Sci., U.S.A. 100 (21), 12349-12354 (2003).
[CrossRef]

S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212-1214(2003).
[CrossRef] [PubMed]

Kopans, D.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Lepsøe, S.

L. E. B. Stuhr, S. Lepsøe, R. Myklebust, H. Wiig, and R. K. Reed, “Fluid pressure in human dermal fibroblast aggregates measured with micropipettes,” Am. J. Physiol.: Cell Physiol. 285, C1101-C1108 (2003).

Liu, N.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

McLean, D.

A. Poulos and D. McLean, “The application of breast compression in mammography: a new perspective,” Radiography 10, 131-137 (2004).
[CrossRef]

Meaney, P. M.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, S. K. Soho, and W. A. Wells, “Electromagnetic breast imaging--pilot results in women with abnormal mammography,” Radiology (Oak Brook, Ill.) 243 , 350-359(2007).

Miga, M. I.

E. E. Van Houten, J. B. Weaver, M. I. Miga, F. E. Kennedy, and K. D. Paulsen, “Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process,” Med. Phys. 27, 101-107 (2000).
[CrossRef] [PubMed]

Moore, R.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Myklebust, R.

L. E. B. Stuhr, S. Lepsøe, R. Myklebust, H. Wiig, and R. K. Reed, “Fluid pressure in human dermal fibroblast aggregates measured with micropipettes,” Am. J. Physiol.: Cell Physiol. 285, C1101-C1108 (2003).

Nathan, S.

G. R. D. Saminathan, S. Nathan, J. E. Casas-Ganem, B. H. Hoang, Rebecca Sowers, Rui Yang, A. G. Huvos, R. Gorlick, and J. H. Healey, “Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma,” Clin. Cancer Res. 11, 2389-2397 (2005).
[CrossRef]

Nioka, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Orel, S. G.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Östman, A.

C.-H. Heldin, K. Rubin, K. Pietras, and A. Östman, “High interstitial fluid pressure--an obstacle in cancer therapy,” Nat. Rev. Cancer 4, 806-813 (2004).
[CrossRef] [PubMed]

Parisky, Y.

J. R. Brenner and Y. Parisky, “Alternative breast-imaging approaches,” Radiol. Clin. North Am. 45, 907-923 (2007).
[CrossRef] [PubMed]

Paulsen, K. D.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, S. K. Soho, and W. A. Wells, “Electromagnetic breast imaging--pilot results in women with abnormal mammography,” Radiology (Oak Brook, Ill.) 243 , 350-359(2007).

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, K. D. Paulsen, and J. B. Weaver, “A three-parameter mechanical property reconstruction method for MR-based elastic property imaging,” IEEE Trans. Med. Imaging 24, 311-324 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858-1869 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968-1970 (2005).
[CrossRef] [PubMed]

H. Dehghani, M. Doyley, B. W. pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modeling for image reconstruction in near-infrared tomography,” Phys. Med. Biol. 49, 1131-1145 (2004).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212-1214(2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” Proc. Nat. Acad. Sci., U.S.A. 100 (21), 12349-12354 (2003).
[CrossRef]

E. E. Van Houten, J. B. Weaver, M. I. Miga, F. E. Kennedy, and K. D. Paulsen, “Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process,” Med. Phys. 27, 101-107 (2000).
[CrossRef] [PubMed]

Pera, V. E.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

Pietras, K.

C.-H. Heldin, K. Rubin, K. Pietras, and A. Östman, “High interstitial fluid pressure--an obstacle in cancer therapy,” Nat. Rev. Cancer 4, 806-813 (2004).
[CrossRef] [PubMed]

Pogue, B. W.

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121-4136 (2007).
[CrossRef] [PubMed]

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, S. K. Soho, and W. A. Wells, “Electromagnetic breast imaging--pilot results in women with abnormal mammography,” Radiology (Oak Brook, Ill.) 243 , 350-359(2007).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858-1869 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968-1970 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef] [PubMed]

H. Dehghani, M. Doyley, B. W. pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modeling for image reconstruction in near-infrared tomography,” Phys. Med. Biol. 49, 1131-1145 (2004).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212-1214(2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” Proc. Nat. Acad. Sci., U.S.A. 100 (21), 12349-12354 (2003).
[CrossRef]

Poplack, S. P.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, S. K. Soho, and W. A. Wells, “Electromagnetic breast imaging--pilot results in women with abnormal mammography,” Radiology (Oak Brook, Ill.) 243 , 350-359(2007).

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968-1970 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” Proc. Nat. Acad. Sci., U.S.A. 100 (21), 12349-12354 (2003).
[CrossRef]

S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212-1214(2003).
[CrossRef] [PubMed]

Poulos, A.

A. Poulos and D. McLean, “The application of breast compression in mammography: a new perspective,” Radiography 10, 131-137 (2004).
[CrossRef]

Povoski, S. P.

Rafferty, E.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Reed, R. K.

L. E. B. Stuhr, S. Lepsøe, R. Myklebust, H. Wiig, and R. K. Reed, “Fluid pressure in human dermal fibroblast aggregates measured with micropipettes,” Am. J. Physiol.: Cell Physiol. 285, C1101-C1108 (2003).

Rubin, K.

C.-H. Heldin, K. Rubin, K. Pietras, and A. Östman, “High interstitial fluid pressure--an obstacle in cancer therapy,” Nat. Rev. Cancer 4, 806-813 (2004).
[CrossRef] [PubMed]

Saminathan, G. R. D.

G. R. D. Saminathan, S. Nathan, J. E. Casas-Ganem, B. H. Hoang, Rebecca Sowers, Rui Yang, A. G. Huvos, R. Gorlick, and J. H. Healey, “Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma,” Clin. Cancer Res. 11, 2389-2397 (2005).
[CrossRef]

Sassaroli, A.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

Schnall, M. D.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[PubMed]

Soho, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” Proc. Nat. Acad. Sci., U.S.A. 100 (21), 12349-12354 (2003).
[CrossRef]

Soho, S. K.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, S. K. Soho, and W. A. Wells, “Electromagnetic breast imaging--pilot results in women with abnormal mammography,” Radiology (Oak Brook, Ill.) 243 , 350-359(2007).

Sowers, Rebecca

G. R. D. Saminathan, S. Nathan, J. E. Casas-Ganem, B. H. Hoang, Rebecca Sowers, Rui Yang, A. G. Huvos, R. Gorlick, and J. H. Healey, “Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma,” Clin. Cancer Res. 11, 2389-2397 (2005).
[CrossRef]

Srinivasan, S.

Stuhr, L. E. B.

L. E. B. Stuhr, S. Lepsøe, R. Myklebust, H. Wiig, and R. K. Reed, “Fluid pressure in human dermal fibroblast aggregates measured with micropipettes,” Am. J. Physiol.: Cell Physiol. 285, C1101-C1108 (2003).

Sun, D.

Tosteson, T. D.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, S. K. Soho, and W. A. Wells, “Electromagnetic breast imaging--pilot results in women with abnormal mammography,” Radiology (Oak Brook, Ill.) 243 , 350-359(2007).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” Proc. Nat. Acad. Sci., U.S.A. 100 (21), 12349-12354 (2003).
[CrossRef]

Tromberg, B. J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[PubMed]

Van Houten, E. E.

E. E. Van Houten, J. B. Weaver, M. I. Miga, F. E. Kennedy, and K. D. Paulsen, “Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process,” Med. Phys. 27, 101-107 (2000).
[CrossRef] [PubMed]

Van Houten, E. E. W.

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, K. D. Paulsen, and J. B. Weaver, “A three-parameter mechanical property reconstruction method for MR-based elastic property imaging,” IEEE Trans. Med. Imaging 24, 311-324 (2005).
[CrossRef] [PubMed]

Wang, B.

Wang, X.

Weaver, J.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968-1970 (2005).
[CrossRef] [PubMed]

Weaver, J. B.

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, K. D. Paulsen, and J. B. Weaver, “A three-parameter mechanical property reconstruction method for MR-based elastic property imaging,” IEEE Trans. Med. Imaging 24, 311-324 (2005).
[CrossRef] [PubMed]

E. E. Van Houten, J. B. Weaver, M. I. Miga, F. E. Kennedy, and K. D. Paulsen, “Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process,” Med. Phys. 27, 101-107 (2000).
[CrossRef] [PubMed]

Wells, W. A.

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, S. K. Soho, and W. A. Wells, “Electromagnetic breast imaging--pilot results in women with abnormal mammography,” Radiology (Oak Brook, Ill.) 243 , 350-359(2007).

Wiig, H.

L. E. B. Stuhr, S. Lepsøe, R. Myklebust, H. Wiig, and R. K. Reed, “Fluid pressure in human dermal fibroblast aggregates measured with micropipettes,” Am. J. Physiol.: Cell Physiol. 285, C1101-C1108 (2003).

Xu, R. X.

Yalavarthy, P. K.

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121-4136 (2007).
[CrossRef] [PubMed]

Yang, Rui

G. R. D. Saminathan, S. Nathan, J. E. Casas-Ganem, B. H. Hoang, Rebecca Sowers, Rui Yang, A. G. Huvos, R. Gorlick, and J. H. Healey, “Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma,” Clin. Cancer Res. 11, 2389-2397 (2005).
[CrossRef]

Zhang, J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Acad. Radiol.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Am. J. Physiol.: Cell Physiol.

L. E. B. Stuhr, S. Lepsøe, R. Myklebust, H. Wiig, and R. K. Reed, “Fluid pressure in human dermal fibroblast aggregates measured with micropipettes,” Am. J. Physiol.: Cell Physiol. 285, C1101-C1108 (2003).

Appl. Opt.

Cancer Res.

Y. Boucher and R. K. Jain, “Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse,” Cancer Res. 52, 5110-5114 (1992).
[PubMed]

Clin. Cancer Res.

G. R. D. Saminathan, S. Nathan, J. E. Casas-Ganem, B. H. Hoang, Rebecca Sowers, Rui Yang, A. G. Huvos, R. Gorlick, and J. H. Healey, “Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma,” Clin. Cancer Res. 11, 2389-2397 (2005).
[CrossRef]

IEEE Trans. Med. Imaging

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, K. D. Paulsen, and J. B. Weaver, “A three-parameter mechanical property reconstruction method for MR-based elastic property imaging,” IEEE Trans. Med. Imaging 24, 311-324 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
[PubMed]

Med. Phys.

E. E. Van Houten, J. B. Weaver, M. I. Miga, F. E. Kennedy, and K. D. Paulsen, “Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process,” Med. Phys. 27, 101-107 (2000).
[CrossRef] [PubMed]

Nat. Rev. Cancer

C.-H. Heldin, K. Rubin, K. Pietras, and A. Östman, “High interstitial fluid pressure--an obstacle in cancer therapy,” Nat. Rev. Cancer 4, 806-813 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

H. Dehghani, M. Doyley, B. W. pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modeling for image reconstruction in near-infrared tomography,” Phys. Med. Biol. 49, 1131-1145 (2004).
[CrossRef] [PubMed]

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121-4136 (2007).
[CrossRef] [PubMed]

Proc. Nat. Acad. Sci., U.S.A.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” Proc. Nat. Acad. Sci., U.S.A. 100 (21), 12349-12354 (2003).
[CrossRef]

Radiography

A. Poulos and D. McLean, “The application of breast compression in mammography: a new perspective,” Radiography 10, 131-137 (2004).
[CrossRef]

Radiol. Clin. North Am.

J. R. Brenner and Y. Parisky, “Alternative breast-imaging approaches,” Radiol. Clin. North Am. 45, 907-923 (2007).
[CrossRef] [PubMed]

Radiology (Oak Brook, Ill.)

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, S. K. Soho, and W. A. Wells, “Electromagnetic breast imaging--pilot results in women with abnormal mammography,” Radiology (Oak Brook, Ill.) 243 , 350-359(2007).

Technol. Cancer Res. Treat.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) System schematic and (b) patient interface.

Fig. 2
Fig. 2

Timeline for adding and releasing pressure.

Fig. 3
Fig. 3

Heterogeneous blood phantom experiments. (a) Reconstructed images of a phantom. The blood concentrations inside and outside the inclusion are 1.75% and 1%, respectively. (b) Estimated average Hb T , S t O 2 , and H 2 O values inside (filled circles) and outside (nonfilled circles) the phantom inclusion.

Fig. 4
Fig. 4

Pressures measured when the breast was compressed 10 mm in diameter as a function of subject BMI.

Fig. 5
Fig. 5

Dynamic pressure response of a normal subject. Average Hb T is reduced when pressure is applied to the breast surface. Error bars represent the standard deviation in the imaged property over the whole breast.

Fig. 6
Fig. 6

Percent change in Hb T , S t O 2 , and H 2 O between the values at different pressures ( P i ), relative to zero pressure ( P 0 ), plotted as a function of the pressure applied to 13 subjects, where the total pressure change ranges from 1 to 20 kPa . Here, Δ p i p 0 is the difference in the values (of Hb T or S t O 2 or H 2 O ) at P i and that at zero pressure, P 0 . V p 0 is the value (of Hb T or S t O 2 or H 2 O ) at P 0 .

Fig. 7
Fig. 7

Maximum Hb T , S t O 2 , and H 2 O change when the breast was compressed 10 mm in diameter versus BMI. Total hemoglobin change was correlated with BMI with statistical significance ( p = 0.02 ).

Metrics