Abstract

A microscopy system has been constructed that is capable of simultaneously acquiring both Raman spectra and angle-resolved elastic-scattering patterns in either epi- or transillumination modes with a 7μm spot size. The benefits and drawbacks of the epi- and transillumination modalities are discussed. Validation studies have been performed on single beads of a few micrometers in size, as well as on ensembles of submicrometer particles. In addition, transilluminated Raman and elastic-scattering spectra were obtained from single granulocytes and peripheral blood monocytes. Both the Raman- and the elastic-scattering channels show clear differences between the two types of immune cells.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
    [CrossRef] [PubMed]
  2. J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938(2005).
    [CrossRef] [PubMed]
  3. J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c,” Opt. Lett. 32, 2517-2519 (2007).
    [CrossRef] [PubMed]
  4. M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
    [CrossRef] [PubMed]
  5. A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64-69 (2002).
    [CrossRef] [PubMed]
  6. A. M. K. Enejder, T.-W. Koo, J. Oh, M. Hunter, S. Sasic, M. S. Feld, and G. L. Horowitz, “Blood analysis by Raman spectroscopy,” Opt. Lett. 27, 2004-2006 (2002).
    [CrossRef]
  7. K. U. Schallreuter, M. Zschiesche, J. Moore, A. Panske, N. A. Hibberts, F. H. Herrmann, H. R. Metelmann, and J. Sawatzki, “In vivo evidence for compromised phenylalanine metabolism in vitiligo,” Biochem. Biophys. Res. Commun. 243, 395-399 (1998).
    [CrossRef] [PubMed]
  8. H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, S. E. Keates, I. Bigio, I. Itzkan, S. D. Freedman, R. Bansil, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic (CLASS) microscopy,” Appl. Opt. 46, 1760-1769 (2007).
    [CrossRef] [PubMed]
  9. W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light scattering study of single live cells,” Opt. Lett. 33, 1596-1598(2008).
    [CrossRef] [PubMed]
  10. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648-656 (2006).
    [CrossRef]
  11. C. Xie, D. Chen, and Y.-Q. Li, “Raman sorting and identification of single living micro-organisms with optical tweezers,” Opt. Lett. 30, 1800-1802 (2005).
    [CrossRef] [PubMed]
  12. M. D. Mannie, T. J. McConnell, C. Xie, and Y.-Q. Li, “Activation-dependent phases of t cells distinguished by use of optical tweezers and near infrared Raman spectroscopy,” J. Immunol. Methods 297, 53-60 (2005).
    [CrossRef] [PubMed]
  13. Z. J. Smith and A. J. Berger, “Integrated Raman- and angular-scattering microscopy,” Opt. Lett. 33, 714-716 (2008).
    [CrossRef] [PubMed]
  14. W. J. Cottrell, J. D. Wilson, and T. H. Foster, “Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy,” Opt. Lett. 32, 2348-2350 (2007).
    [CrossRef] [PubMed]
  15. M. T. Valentine, A. K. Popp, D. A. Weitz, and P. D. Kaplan, “Microscope-based static light-scattering instrument,” Opt. Lett. 26, 890-892 (2001).
    [CrossRef]
  16. N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83, 1691-1700 (2002).
    [CrossRef] [PubMed]
  17. G. Grehan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: Numerical results using a localized approximation,” Appl. Opt. 25, 3539-3548 (1986).
    [CrossRef] [PubMed]
  18. N. J. Moore and M. A. Alonso, “Closed form formula for Mie scattering of nonparaxial analogues of Gaussian beams,” Opt. Express 16, 5926-5933 (2008).
    [CrossRef] [PubMed]
  19. C. Xu, P. S. Carney, and S. A. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13, 5450-5462 (2005).
    [CrossRef] [PubMed]
  20. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57, 1363-1367 (2003).
    [CrossRef] [PubMed]
  21. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 1969).
  22. J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559-570 (1995).
    [CrossRef] [PubMed]
  23. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651-3661 (1999).
    [CrossRef]
  24. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, 1992).
  25. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369-382 (1996).
    [CrossRef] [PubMed]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering by Small Particles (Wiley Interscience, 1983).
  27. B. Jasse, R. S. Chao, and J. L. Koenig, “Laser Raman scattering in uniaxially oriented atactic polystyrene,” J. Polym. Sci. 16, 2157-2169 (1978).
  28. T. T. Wu, J. Y. Qu, and M. Xu, “Unified Mie and fractal scattering by biological cells and subcellular structures,” Opt. Lett. 32, 2324-2326 (2007).
    [CrossRef] [PubMed]
  29. R. S. Brock, X.-H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transfer 102, 25-36 (2006).
    [CrossRef]
  30. P. P. Banada, S. Guob, B. Bayraktar, E. Baeb, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22, 1664-1671(2007).
    [CrossRef]
  31. J. D. Wilson and T. H. Foster, “Mie theory interpretations of light scattering from intact cells,” Opt. Lett. 30, 2442-2444 (2005).
    [CrossRef] [PubMed]
  32. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387 (2002).
    [CrossRef] [PubMed]
  33. P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, “Development of the granule population in neutrophil granulocytes from human bone marrow,” Cell Tissue Res. 234, 469-496 (1983).
    [CrossRef] [PubMed]
  34. G. Fossati, D. A. Moulding, D. G. Spiller, R. J. Moots, M. R. H. White, and S. W. Edwards, “The mitochondrial network of human neutrophils: Role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis,” J. Immunol. 170, 1964-1972 (2003).
    [PubMed]
  35. G. E. Palade, “An electron microscope study of the mitochondrial structure,” J. Histochem. Cytochem. 1, 188-211 (1953).
    [CrossRef] [PubMed]
  36. T. M. Mayhew, A. J. Burgess, C. D. Gregory, and M. E. Atkinson, “On the problem of counting and sizing mitochondria: a general reappraisal based on ultrastructural studies of mammalian lymphocytes,” Cell Tissue Res. 204, 297-303 (1979).
    [CrossRef] [PubMed]
  37. Y. Sadahira, K. Akisada, T. Sugihara, S. Hata, K. Uehira, N. Muraki, and T. Manabe, “Comparative ultrastructural study of cytotoxic granules in nasal natural killer cell lymphoma, intestinal T-cell lymphoma, and anaplastic large cell lymphoma,” Virchows Archiv . 438, 280-288 (2001).
    [CrossRef] [PubMed]
  38. G. Brittinger, R. Hirschhorn, K. Hirschhorn, and G. Weissmann, “Effect of pokeweed mitogen on lymphocyte lysosomes,” J. Cell Biol. 40, 843-846 (1969).
    [CrossRef] [PubMed]
  39. N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. Greve, and C. Otto, “Nonresonant Raman imaging of protein distribution in single human cells,” Biopolymers 72, 1-9 (2003).
    [CrossRef]
  40. J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12, 014010(2007).
    [CrossRef] [PubMed]

2008

2007

2006

R. S. Brock, X.-H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transfer 102, 25-36 (2006).
[CrossRef]

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648-656 (2006).
[CrossRef]

2005

M. D. Mannie, T. J. McConnell, C. Xie, and Y.-Q. Li, “Activation-dependent phases of t cells distinguished by use of optical tweezers and near infrared Raman spectroscopy,” J. Immunol. Methods 297, 53-60 (2005).
[CrossRef] [PubMed]

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938(2005).
[CrossRef] [PubMed]

C. Xie, D. Chen, and Y.-Q. Li, “Raman sorting and identification of single living micro-organisms with optical tweezers,” Opt. Lett. 30, 1800-1802 (2005).
[CrossRef] [PubMed]

C. Xu, P. S. Carney, and S. A. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13, 5450-5462 (2005).
[CrossRef] [PubMed]

J. D. Wilson and T. H. Foster, “Mie theory interpretations of light scattering from intact cells,” Opt. Lett. 30, 2442-2444 (2005).
[CrossRef] [PubMed]

2004

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

2003

G. Fossati, D. A. Moulding, D. G. Spiller, R. J. Moots, M. R. H. White, and S. W. Edwards, “The mitochondrial network of human neutrophils: Role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis,” J. Immunol. 170, 1964-1972 (2003).
[PubMed]

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57, 1363-1367 (2003).
[CrossRef] [PubMed]

N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. Greve, and C. Otto, “Nonresonant Raman imaging of protein distribution in single human cells,” Biopolymers 72, 1-9 (2003).
[CrossRef]

2002

A. M. K. Enejder, T.-W. Koo, J. Oh, M. Hunter, S. Sasic, M. S. Feld, and G. L. Horowitz, “Blood analysis by Raman spectroscopy,” Opt. Lett. 27, 2004-2006 (2002).
[CrossRef]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387 (2002).
[CrossRef] [PubMed]

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64-69 (2002).
[CrossRef] [PubMed]

N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83, 1691-1700 (2002).
[CrossRef] [PubMed]

2001

Y. Sadahira, K. Akisada, T. Sugihara, S. Hata, K. Uehira, N. Muraki, and T. Manabe, “Comparative ultrastructural study of cytotoxic granules in nasal natural killer cell lymphoma, intestinal T-cell lymphoma, and anaplastic large cell lymphoma,” Virchows Archiv . 438, 280-288 (2001).
[CrossRef] [PubMed]

M. T. Valentine, A. K. Popp, D. A. Weitz, and P. D. Kaplan, “Microscope-based static light-scattering instrument,” Opt. Lett. 26, 890-892 (2001).
[CrossRef]

1999

1998

K. U. Schallreuter, M. Zschiesche, J. Moore, A. Panske, N. A. Hibberts, F. H. Herrmann, H. R. Metelmann, and J. Sawatzki, “In vivo evidence for compromised phenylalanine metabolism in vitiligo,” Biochem. Biophys. Res. Commun. 243, 395-399 (1998).
[CrossRef] [PubMed]

1996

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369-382 (1996).
[CrossRef] [PubMed]

1995

1992

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, 1992).

1986

1983

C. F. Bohren and D. R. Huffman, Absorption and Scattering by Small Particles (Wiley Interscience, 1983).

P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, “Development of the granule population in neutrophil granulocytes from human bone marrow,” Cell Tissue Res. 234, 469-496 (1983).
[CrossRef] [PubMed]

1979

T. M. Mayhew, A. J. Burgess, C. D. Gregory, and M. E. Atkinson, “On the problem of counting and sizing mitochondria: a general reappraisal based on ultrastructural studies of mammalian lymphocytes,” Cell Tissue Res. 204, 297-303 (1979).
[CrossRef] [PubMed]

1978

B. Jasse, R. S. Chao, and J. L. Koenig, “Laser Raman scattering in uniaxially oriented atactic polystyrene,” J. Polym. Sci. 16, 2157-2169 (1978).

1969

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 1969).

G. Brittinger, R. Hirschhorn, K. Hirschhorn, and G. Weissmann, “Effect of pokeweed mitogen on lymphocyte lysosomes,” J. Cell Biol. 40, 843-846 (1969).
[CrossRef] [PubMed]

1953

G. E. Palade, “An electron microscope study of the mitochondrial structure,” J. Histochem. Cytochem. 1, 188-211 (1953).
[CrossRef] [PubMed]

Aida, T.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387 (2002).
[CrossRef] [PubMed]

Akisada, K.

Y. Sadahira, K. Akisada, T. Sugihara, S. Hata, K. Uehira, N. Muraki, and T. Manabe, “Comparative ultrastructural study of cytotoxic granules in nasal natural killer cell lymphoma, intestinal T-cell lymphoma, and anaplastic large cell lymphoma,” Virchows Archiv . 438, 280-288 (2001).
[CrossRef] [PubMed]

Alonso, M. A.

Andersson, C.

Atkinson, M. E.

T. M. Mayhew, A. J. Burgess, C. D. Gregory, and M. E. Atkinson, “On the problem of counting and sizing mitochondria: a general reappraisal based on ultrastructural studies of mammalian lymphocytes,” Cell Tissue Res. 204, 297-303 (1979).
[CrossRef] [PubMed]

Badizadegan, K.

Baeb, E.

P. P. Banada, S. Guob, B. Bayraktar, E. Baeb, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22, 1664-1671(2007).
[CrossRef]

Banada, P. P.

P. P. Banada, S. Guob, B. Bayraktar, E. Baeb, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22, 1664-1671(2007).
[CrossRef]

Bansil, R.

Bayraktar, B.

P. P. Banada, S. Guob, B. Bayraktar, E. Baeb, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22, 1664-1671(2007).
[CrossRef]

Berger, A. J.

Beuthan, J.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369-382 (1996).
[CrossRef] [PubMed]

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 1969).

Bhunia, A. K.

P. P. Banada, S. Guob, B. Bayraktar, E. Baeb, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22, 1664-1671(2007).
[CrossRef]

Bigelow, C. E.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938(2005).
[CrossRef] [PubMed]

Bigio, I.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering by Small Particles (Wiley Interscience, 1983).

Boone, C. W.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

Boppart, S. A.

Boustany, N. N.

N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83, 1691-1700 (2002).
[CrossRef] [PubMed]

Brederoo, P.

P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, “Development of the granule population in neutrophil granulocytes from human bone marrow,” Cell Tissue Res. 234, 469-496 (1983).
[CrossRef] [PubMed]

Brittinger, G.

G. Brittinger, R. Hirschhorn, K. Hirschhorn, and G. Weissmann, “Effect of pokeweed mitogen on lymphocyte lysosomes,” J. Cell Biol. 40, 843-846 (1969).
[CrossRef] [PubMed]

Brock, R. S.

R. S. Brock, X.-H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transfer 102, 25-36 (2006).
[CrossRef]

Burgess, A. J.

T. M. Mayhew, A. J. Burgess, C. D. Gregory, and M. E. Atkinson, “On the problem of counting and sizing mitochondria: a general reappraisal based on ultrastructural studies of mammalian lymphocytes,” Cell Tissue Res. 204, 297-303 (1979).
[CrossRef] [PubMed]

Calkins, D. J.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938(2005).
[CrossRef] [PubMed]

Carney, P. S.

Carpenter, S.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387 (2002).
[CrossRef] [PubMed]

Caspers, P. J.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64-69 (2002).
[CrossRef] [PubMed]

Chan, J. W.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648-656 (2006).
[CrossRef]

Chao, R. S.

B. Jasse, R. S. Chao, and J. L. Koenig, “Laser Raman scattering in uniaxially oriented atactic polystyrene,” J. Polym. Sci. 16, 2157-2169 (1978).

Chen, D.

Choi, W.

Christensen, D. H.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

Cipolloni, P. B.

Cottrell, W. J.

W. J. Cottrell, J. D. Wilson, and T. H. Foster, “Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy,” Opt. Lett. 32, 2348-2350 (2007).
[CrossRef] [PubMed]

J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12, 014010(2007).
[CrossRef] [PubMed]

Dasari, R. R.

W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light scattering study of single live cells,” Opt. Lett. 33, 1596-1598(2008).
[CrossRef] [PubMed]

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

Drezek, R.

N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83, 1691-1700 (2002).
[CrossRef] [PubMed]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651-3661 (1999).
[CrossRef]

Dunn, A.

Edwards, S. W.

G. Fossati, D. A. Moulding, D. G. Spiller, R. J. Moots, M. R. H. White, and S. W. Edwards, “The mitochondrial network of human neutrophils: Role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis,” J. Immunol. 170, 1964-1972 (2003).
[PubMed]

Enejder, A. M. K.

Fang, H.

Fang-Yen, C.

Feld, M. S.

W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light scattering study of single live cells,” Opt. Lett. 33, 1596-1598(2008).
[CrossRef] [PubMed]

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

A. M. K. Enejder, T.-W. Koo, J. Oh, M. Hunter, S. Sasic, M. S. Feld, and G. L. Horowitz, “Blood analysis by Raman spectroscopy,” Opt. Lett. 27, 2004-2006 (2002).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, 1992).

Fossati, G.

G. Fossati, D. A. Moulding, D. G. Spiller, R. J. Moots, M. R. H. White, and S. W. Edwards, “The mitochondrial network of human neutrophils: Role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis,” J. Immunol. 170, 1964-1972 (2003).
[PubMed]

Foster, T. H.

Freedman, S. D.

Freyer, J. P.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387 (2002).
[CrossRef] [PubMed]

Giesselman, B. R.

Gniadecka, M.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

Gniadecki, R.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

Gouesbet, G.

Graf, R. N.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

Gregory, C. D.

T. M. Mayhew, A. J. Burgess, C. D. Gregory, and M. E. Atkinson, “On the problem of counting and sizing mitochondria: a general reappraisal based on ultrastructural studies of mammalian lymphocytes,” Cell Tissue Res. 204, 297-303 (1979).
[CrossRef] [PubMed]

Grehan, G.

Greve, J.

N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. Greve, and C. Otto, “Nonresonant Raman imaging of protein distribution in single human cells,” Biopolymers 72, 1-9 (2003).
[CrossRef]

Guerra, A.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387 (2002).
[CrossRef] [PubMed]

Guob, S.

P. P. Banada, S. Guob, B. Bayraktar, E. Baeb, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22, 1664-1671(2007).
[CrossRef]

Hanlon, E. B.

Hansen, L. K.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

Hata, S.

Y. Sadahira, K. Akisada, T. Sugihara, S. Hata, K. Uehira, N. Muraki, and T. Manabe, “Comparative ultrastructural study of cytotoxic granules in nasal natural killer cell lymphoma, intestinal T-cell lymphoma, and anaplastic large cell lymphoma,” Virchows Archiv . 438, 280-288 (2001).
[CrossRef] [PubMed]

Hayes, D. P.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64-69 (2002).
[CrossRef] [PubMed]

Helfmann, J.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369-382 (1996).
[CrossRef] [PubMed]

Hercogova, J.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

Herrig, M.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369-382 (1996).
[CrossRef] [PubMed]

Herrmann, F. H.

K. U. Schallreuter, M. Zschiesche, J. Moore, A. Panske, N. A. Hibberts, F. H. Herrmann, H. R. Metelmann, and J. Sawatzki, “In vivo evidence for compromised phenylalanine metabolism in vitiligo,” Biochem. Biophys. Res. Commun. 243, 395-399 (1998).
[CrossRef] [PubMed]

Heule, F.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64-69 (2002).
[CrossRef] [PubMed]

Hibberts, N. A.

K. U. Schallreuter, M. Zschiesche, J. Moore, A. Panske, N. A. Hibberts, F. H. Herrmann, H. R. Metelmann, and J. Sawatzki, “In vivo evidence for compromised phenylalanine metabolism in vitiligo,” Biochem. Biophys. Res. Commun. 243, 395-399 (1998).
[CrossRef] [PubMed]

Hirleman, E. D.

P. P. Banada, S. Guob, B. Bayraktar, E. Baeb, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22, 1664-1671(2007).
[CrossRef]

Hirschhorn, K.

G. Brittinger, R. Hirschhorn, K. Hirschhorn, and G. Weissmann, “Effect of pokeweed mitogen on lymphocyte lysosomes,” J. Cell Biol. 40, 843-846 (1969).
[CrossRef] [PubMed]

Hirschhorn, R.

G. Brittinger, R. Hirschhorn, K. Hirschhorn, and G. Weissmann, “Effect of pokeweed mitogen on lymphocyte lysosomes,” J. Cell Biol. 40, 843-846 (1969).
[CrossRef] [PubMed]

Horowitz, G. L.

Hu, X.-H.

R. S. Brock, X.-H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transfer 102, 25-36 (2006).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering by Small Particles (Wiley Interscience, 1983).

Hunter, M.

Huser, T.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648-656 (2006).
[CrossRef]

Ihara, K.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648-656 (2006).
[CrossRef]

Itzkan, I.

Jasse, B.

B. Jasse, R. S. Chao, and J. L. Koenig, “Laser Raman scattering in uniaxially oriented atactic polystyrene,” J. Polym. Sci. 16, 2157-2169 (1978).

Johnson, T. M.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387 (2002).
[CrossRef] [PubMed]

Kaplan, P. D.

Keates, S. E.

Kimerer, L. M.

Koenig, J. L.

B. Jasse, R. S. Chao, and J. L. Koenig, “Laser Raman scattering in uniaxially oriented atactic polystyrene,” J. Polym. Sci. 16, 2157-2169 (1978).

Koo, T.-W.

Kraan, Y.

N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. Greve, and C. Otto, “Nonresonant Raman imaging of protein distribution in single human cells,” Biopolymers 72, 1-9 (2003).
[CrossRef]

Lane, S. M.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648-656 (2006).
[CrossRef]

Lenferink, A.

N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. Greve, and C. Otto, “Nonresonant Raman imaging of protein distribution in single human cells,” Biopolymers 72, 1-9 (2003).
[CrossRef]

Li, Y.-Q.

C. Xie, D. Chen, and Y.-Q. Li, “Raman sorting and identification of single living micro-organisms with optical tweezers,” Opt. Lett. 30, 1800-1802 (2005).
[CrossRef] [PubMed]

M. D. Mannie, T. J. McConnell, C. Xie, and Y.-Q. Li, “Activation-dependent phases of t cells distinguished by use of optical tweezers and near infrared Raman spectroscopy,” J. Immunol. Methods 297, 53-60 (2005).
[CrossRef] [PubMed]

Lieber, C. A.

Lock, J. A.

Lu, J. Q.

R. S. Brock, X.-H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transfer 102, 25-36 (2006).
[CrossRef]

Mahadevan-Jansen, A.

Maheu, B.

Manabe, T.

Y. Sadahira, K. Akisada, T. Sugihara, S. Hata, K. Uehira, N. Muraki, and T. Manabe, “Comparative ultrastructural study of cytotoxic granules in nasal natural killer cell lymphoma, intestinal T-cell lymphoma, and anaplastic large cell lymphoma,” Virchows Archiv . 438, 280-288 (2001).
[CrossRef] [PubMed]

Mannie, M. D.

M. D. Mannie, T. J. McConnell, C. Xie, and Y.-Q. Li, “Activation-dependent phases of t cells distinguished by use of optical tweezers and near infrared Raman spectroscopy,” J. Immunol. Methods 297, 53-60 (2005).
[CrossRef] [PubMed]

Mayhew, T. M.

T. M. Mayhew, A. J. Burgess, C. D. Gregory, and M. E. Atkinson, “On the problem of counting and sizing mitochondria: a general reappraisal based on ultrastructural studies of mammalian lymphocytes,” Cell Tissue Res. 204, 297-303 (1979).
[CrossRef] [PubMed]

McConnell, T. J.

M. D. Mannie, T. J. McConnell, C. Xie, and Y.-Q. Li, “Activation-dependent phases of t cells distinguished by use of optical tweezers and near infrared Raman spectroscopy,” J. Immunol. Methods 297, 53-60 (2005).
[CrossRef] [PubMed]

Metelmann, H. R.

K. U. Schallreuter, M. Zschiesche, J. Moore, A. Panske, N. A. Hibberts, F. H. Herrmann, H. R. Metelmann, and J. Sawatzki, “In vivo evidence for compromised phenylalanine metabolism in vitiligo,” Biochem. Biophys. Res. Commun. 243, 395-399 (1998).
[CrossRef] [PubMed]

Minet, O.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369-382 (1996).
[CrossRef] [PubMed]

Mitra, S.

Modell, M. D.

Mommaas-Kienhuis, A. M.

P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, “Development of the granule population in neutrophil granulocytes from human bone marrow,” Cell Tissue Res. 234, 469-496 (1983).
[CrossRef] [PubMed]

Moore, J.

K. U. Schallreuter, M. Zschiesche, J. Moore, A. Panske, N. A. Hibberts, F. H. Herrmann, H. R. Metelmann, and J. Sawatzki, “In vivo evidence for compromised phenylalanine metabolism in vitiligo,” Biochem. Biophys. Res. Commun. 243, 395-399 (1998).
[CrossRef] [PubMed]

Moore, N. J.

Moots, R. J.

G. Fossati, D. A. Moulding, D. G. Spiller, R. J. Moots, M. R. H. White, and S. W. Edwards, “The mitochondrial network of human neutrophils: Role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis,” J. Immunol. 170, 1964-1972 (2003).
[PubMed]

Moulding, D. A.

G. Fossati, D. A. Moulding, D. G. Spiller, R. J. Moots, M. R. H. White, and S. W. Edwards, “The mitochondrial network of human neutrophils: Role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis,” J. Immunol. 170, 1964-1972 (2003).
[PubMed]

Mourant, J. R.

R. S. Brock, X.-H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transfer 102, 25-36 (2006).
[CrossRef]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387 (2002).
[CrossRef] [PubMed]

Müller, G.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369-382 (1996).
[CrossRef] [PubMed]

Muraki, N.

Y. Sadahira, K. Akisada, T. Sugihara, S. Hata, K. Uehira, N. Muraki, and T. Manabe, “Comparative ultrastructural study of cytotoxic granules in nasal natural killer cell lymphoma, intestinal T-cell lymphoma, and anaplastic large cell lymphoma,” Virchows Archiv . 438, 280-288 (2001).
[CrossRef] [PubMed]

Neumann, M. H. A.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64-69 (2002).
[CrossRef] [PubMed]

Nielsen, O. F.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

Nijssen, A.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64-69 (2002).
[CrossRef] [PubMed]

Nines, R.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

Oh, J.

Otto, C.

N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. Greve, and C. Otto, “Nonresonant Raman imaging of protein distribution in single human cells,” Biopolymers 72, 1-9 (2003).
[CrossRef]

Palade, G. E.

G. E. Palade, “An electron microscope study of the mitochondrial structure,” J. Histochem. Cytochem. 1, 188-211 (1953).
[CrossRef] [PubMed]

Panske, A.

K. U. Schallreuter, M. Zschiesche, J. Moore, A. Panske, N. A. Hibberts, F. H. Herrmann, H. R. Metelmann, and J. Sawatzki, “In vivo evidence for compromised phenylalanine metabolism in vitiligo,” Biochem. Biophys. Res. Commun. 243, 395-399 (1998).
[CrossRef] [PubMed]

Perelman, L. T.

Philipsen, P. A.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

Popp, A. K.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, 1992).

Puppels, G. J.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64-69 (2002).
[CrossRef] [PubMed]

Pyhtila, J. W.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

Qiu, L.

Qu, J. Y.

Rajwa, B.

P. P. Banada, S. Guob, B. Bayraktar, E. Baeb, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22, 1664-1671(2007).
[CrossRef]

Richards-Kortum, R.

Robinson, J. P.

P. P. Banada, S. Guob, B. Bayraktar, E. Baeb, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22, 1664-1671(2007).
[CrossRef]

Rossen, K.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

Sadahira, Y.

Y. Sadahira, K. Akisada, T. Sugihara, S. Hata, K. Uehira, N. Muraki, and T. Manabe, “Comparative ultrastructural study of cytotoxic granules in nasal natural killer cell lymphoma, intestinal T-cell lymphoma, and anaplastic large cell lymphoma,” Virchows Archiv . 438, 280-288 (2001).
[CrossRef] [PubMed]

Salahuddin, S.

Sasic, S.

Sawatzki, J.

K. U. Schallreuter, M. Zschiesche, J. Moore, A. Panske, N. A. Hibberts, F. H. Herrmann, H. R. Metelmann, and J. Sawatzki, “In vivo evidence for compromised phenylalanine metabolism in vitiligo,” Biochem. Biophys. Res. Commun. 243, 395-399 (1998).
[CrossRef] [PubMed]

Schallreuter, K. U.

K. U. Schallreuter, M. Zschiesche, J. Moore, A. Panske, N. A. Hibberts, F. H. Herrmann, H. R. Metelmann, and J. Sawatzki, “In vivo evidence for compromised phenylalanine metabolism in vitiligo,” Biochem. Biophys. Res. Commun. 243, 395-399 (1998).
[CrossRef] [PubMed]

Schut, T. C. B.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64-69 (2002).
[CrossRef] [PubMed]

Sigurdsson, S.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

Smith, Z. J.

Spiller, D. G.

G. Fossati, D. A. Moulding, D. G. Spiller, R. J. Moots, M. R. H. White, and S. W. Edwards, “The mitochondrial network of human neutrophils: Role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis,” J. Immunol. 170, 1964-1972 (2003).
[PubMed]

Steele, V. E.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

Stoner, G. D.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

Sugihara, T.

Y. Sadahira, K. Akisada, T. Sugihara, S. Hata, K. Uehira, N. Muraki, and T. Manabe, “Comparative ultrastructural study of cytotoxic granules in nasal natural killer cell lymphoma, intestinal T-cell lymphoma, and anaplastic large cell lymphoma,” Virchows Archiv . 438, 280-288 (2001).
[CrossRef] [PubMed]

Taylor, D. S.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648-656 (2006).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, 1992).

Thakor, N. V.

N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83, 1691-1700 (2002).
[CrossRef] [PubMed]

Thomsen, H. K.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

Turner, B. S.

Uehira, K.

Y. Sadahira, K. Akisada, T. Sugihara, S. Hata, K. Uehira, N. Muraki, and T. Manabe, “Comparative ultrastructural study of cytotoxic granules in nasal natural killer cell lymphoma, intestinal T-cell lymphoma, and anaplastic large cell lymphoma,” Virchows Archiv . 438, 280-288 (2001).
[CrossRef] [PubMed]

Uzunbajakava, N.

N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. Greve, and C. Otto, “Nonresonant Raman imaging of protein distribution in single human cells,” Biopolymers 72, 1-9 (2003).
[CrossRef]

Valentine, M. T.

van der Meulen, J.

P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, “Development of the granule population in neutrophil granulocytes from human bone marrow,” Cell Tissue Res. 234, 469-496 (1983).
[CrossRef] [PubMed]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, 1992).

Vitkin, E.

Vrensen, G.

N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. Greve, and C. Otto, “Nonresonant Raman imaging of protein distribution in single human cells,” Biopolymers 72, 1-9 (2003).
[CrossRef]

Wax, A.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

Weidner, D. A.

R. S. Brock, X.-H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transfer 102, 25-36 (2006).
[CrossRef]

Weissmann, G.

G. Brittinger, R. Hirschhorn, K. Hirschhorn, and G. Weissmann, “Effect of pokeweed mitogen on lymphocyte lysosomes,” J. Cell Biol. 40, 843-846 (1969).
[CrossRef] [PubMed]

Weitz, D. A.

Wessel, S.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

White, M. R. H.

G. Fossati, D. A. Moulding, D. G. Spiller, R. J. Moots, M. R. H. White, and S. W. Edwards, “The mitochondrial network of human neutrophils: Role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis,” J. Immunol. 170, 1964-1972 (2003).
[PubMed]

Willekens, B.

N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. Greve, and C. Otto, “Nonresonant Raman imaging of protein distribution in single human cells,” Biopolymers 72, 1-9 (2003).
[CrossRef]

Wilson, J. D.

Wu, T. T.

Wulf, H. C.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

Xie, C.

M. D. Mannie, T. J. McConnell, C. Xie, and Y.-Q. Li, “Activation-dependent phases of t cells distinguished by use of optical tweezers and near infrared Raman spectroscopy,” J. Immunol. Methods 297, 53-60 (2005).
[CrossRef] [PubMed]

C. Xie, D. Chen, and Y.-Q. Li, “Raman sorting and identification of single living micro-organisms with optical tweezers,” Opt. Lett. 30, 1800-1802 (2005).
[CrossRef] [PubMed]

Xu, C.

Xu, M.

Yu, C.-C.

Zaman, M. M.

Zschiesche, M.

K. U. Schallreuter, M. Zschiesche, J. Moore, A. Panske, N. A. Hibberts, F. H. Herrmann, H. R. Metelmann, and J. Sawatzki, “In vivo evidence for compromised phenylalanine metabolism in vitiligo,” Biochem. Biophys. Res. Commun. 243, 395-399 (1998).
[CrossRef] [PubMed]

Zwerdling, T.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648-656 (2006).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Biochem. Biophys. Res. Commun.

K. U. Schallreuter, M. Zschiesche, J. Moore, A. Panske, N. A. Hibberts, F. H. Herrmann, H. R. Metelmann, and J. Sawatzki, “In vivo evidence for compromised phenylalanine metabolism in vitiligo,” Biochem. Biophys. Res. Commun. 243, 395-399 (1998).
[CrossRef] [PubMed]

Biophys. J.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648-656 (2006).
[CrossRef]

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938(2005).
[CrossRef] [PubMed]

N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83, 1691-1700 (2002).
[CrossRef] [PubMed]

Biopolymers

N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. Greve, and C. Otto, “Nonresonant Raman imaging of protein distribution in single human cells,” Biopolymers 72, 1-9 (2003).
[CrossRef]

Biosens. Bioelectron.

P. P. Banada, S. Guob, B. Bayraktar, E. Baeb, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22, 1664-1671(2007).
[CrossRef]

Cell Tissue Res.

P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, “Development of the granule population in neutrophil granulocytes from human bone marrow,” Cell Tissue Res. 234, 469-496 (1983).
[CrossRef] [PubMed]

T. M. Mayhew, A. J. Burgess, C. D. Gregory, and M. E. Atkinson, “On the problem of counting and sizing mitochondria: a general reappraisal based on ultrastructural studies of mammalian lymphocytes,” Cell Tissue Res. 204, 297-303 (1979).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12, 014010(2007).
[CrossRef] [PubMed]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387 (2002).
[CrossRef] [PubMed]

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

J. Cell Biol.

G. Brittinger, R. Hirschhorn, K. Hirschhorn, and G. Weissmann, “Effect of pokeweed mitogen on lymphocyte lysosomes,” J. Cell Biol. 40, 843-846 (1969).
[CrossRef] [PubMed]

J. Histochem. Cytochem.

G. E. Palade, “An electron microscope study of the mitochondrial structure,” J. Histochem. Cytochem. 1, 188-211 (1953).
[CrossRef] [PubMed]

J. Immunol.

G. Fossati, D. A. Moulding, D. G. Spiller, R. J. Moots, M. R. H. White, and S. W. Edwards, “The mitochondrial network of human neutrophils: Role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis,” J. Immunol. 170, 1964-1972 (2003).
[PubMed]

J. Immunol. Methods

M. D. Mannie, T. J. McConnell, C. Xie, and Y.-Q. Li, “Activation-dependent phases of t cells distinguished by use of optical tweezers and near infrared Raman spectroscopy,” J. Immunol. Methods 297, 53-60 (2005).
[CrossRef] [PubMed]

J. Invest. Dermatol.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443-449 (2004).
[CrossRef] [PubMed]

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64-69 (2002).
[CrossRef] [PubMed]

J. Polym. Sci.

B. Jasse, R. S. Chao, and J. L. Koenig, “Laser Raman scattering in uniaxially oriented atactic polystyrene,” J. Polym. Sci. 16, 2157-2169 (1978).

J. Quant. Spectrosc. Radiat. Transfer

R. S. Brock, X.-H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transfer 102, 25-36 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light scattering study of single live cells,” Opt. Lett. 33, 1596-1598(2008).
[CrossRef] [PubMed]

J. D. Wilson and T. H. Foster, “Mie theory interpretations of light scattering from intact cells,” Opt. Lett. 30, 2442-2444 (2005).
[CrossRef] [PubMed]

T. T. Wu, J. Y. Qu, and M. Xu, “Unified Mie and fractal scattering by biological cells and subcellular structures,” Opt. Lett. 32, 2324-2326 (2007).
[CrossRef] [PubMed]

W. J. Cottrell, J. D. Wilson, and T. H. Foster, “Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy,” Opt. Lett. 32, 2348-2350 (2007).
[CrossRef] [PubMed]

J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c,” Opt. Lett. 32, 2517-2519 (2007).
[CrossRef] [PubMed]

Z. J. Smith and A. J. Berger, “Integrated Raman- and angular-scattering microscopy,” Opt. Lett. 33, 714-716 (2008).
[CrossRef] [PubMed]

M. T. Valentine, A. K. Popp, D. A. Weitz, and P. D. Kaplan, “Microscope-based static light-scattering instrument,” Opt. Lett. 26, 890-892 (2001).
[CrossRef]

A. M. K. Enejder, T.-W. Koo, J. Oh, M. Hunter, S. Sasic, M. S. Feld, and G. L. Horowitz, “Blood analysis by Raman spectroscopy,” Opt. Lett. 27, 2004-2006 (2002).
[CrossRef]

C. Xie, D. Chen, and Y.-Q. Li, “Raman sorting and identification of single living micro-organisms with optical tweezers,” Opt. Lett. 30, 1800-1802 (2005).
[CrossRef] [PubMed]

Phys. Med. Biol.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369-382 (1996).
[CrossRef] [PubMed]

Virchows Archiv

Y. Sadahira, K. Akisada, T. Sugihara, S. Hata, K. Uehira, N. Muraki, and T. Manabe, “Comparative ultrastructural study of cytotoxic granules in nasal natural killer cell lymphoma, intestinal T-cell lymphoma, and anaplastic large cell lymphoma,” Virchows Archiv . 438, 280-288 (2001).
[CrossRef] [PubMed]

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering by Small Particles (Wiley Interscience, 1983).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, 1992).

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 1969).

Supplementary Material (1)

» Media 1: MOV (9220 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the IRAM system. L = 785 nm laser source, FBS = Fresnel beam-sampler pair , DBS = dichroic beam splitter , HNF = holographic notch filter , NDF = neutral density filter , O and O are the object and image planes, respectively, and F and F are the microscope objective’s Fourier plane and its image, respectively. The inset shows the oil immersion objective in contact with a quartz coverslip, with the scatterer in a sample chamber, suspended in water.

Fig. 2
Fig. 2

(a, d) Fourier plane measurements of (a) backscattered and (d) forward-scattered light from the same polystyrene bead. (b), (e) Best theoretical fits in the backward and forward directions, respectively, corresponding to (b)  4.386 μm and (e)  4.372 μm diameter beads. (c), (f) Normalized 1 / χ 2 plots showing peak at best-fit radii for the (c) backward and (f) forward-scattering directions. The width of the 1 / χ 2 peak in (f) is larger than in (c), corresponding to less sensitivity to changes in bead diameter.

Fig. 3
Fig. 3

(a) Full experimental scattergram from a suspension of 500 nm polystyrene beads. (b) Schematic diagram showing how the Fourier plane is separated into four bins. (c) Experimental data in (a), after azimuthal binning, along with best fits of theory to experiment and the expected scattering given the manufacturer’s specifications. The numbers indicate the corresponding bin. The curves are offset for clarity.

Fig. 4
Fig. 4

Two stills from Media 1. In each still the top left is the theoretical backscattered signal from a single polystyrene bead of the specified diameter ( 4.322 μm top still, 4.372 μm bottom still), and the top right is the theoretical forward-scattered signal from the same bead and (bottom) shows a comparison of 1-D slices through the 2-D plots, corresponding to scattering versus θ for ϕ = π / 2 .

Fig. 5
Fig. 5

Raman spectrum of the same polystyrene bead measured in Figs. 2a, 2d, collected using the transillumination geometry.

Fig. 6
Fig. 6

Extracted size distributions and corresponding manufacturer’s specifications for four different single-population suspensions (mean diameters of 330, 500, 820, and 1000 nm ). Each experimental and manufacturer-specified distribution was scaled to have the same area under the curve. The experimentally extracted means agree with manufacturer specifications to within 26 nm in all cases.

Fig. 7
Fig. 7

(a) Experimental data from a mixed suspension of 500 and 820 nm diameter beads after binning, along with best fits of theory to experiment showing both the total signal as well as the relative contributions from each population. (b) Extracted size distribution from data in (a), as well as corresponding manufacturer’s specifications. (c), (d) Extracted size distribution and manufacturer’s specification for a mixture of (c) 330 and 820 nm diameter particles and (d) 500 and 1000 nm diameter particles.

Fig. 8
Fig. 8

Averaged scattergrams from (a) four single granulocytes and (b) four single lymphocytes. (c), (d) Averaged experimental data from (c) four single granulocytes and (d) four single lymphocytes (black dots) from the annular bin labeled 1 in Fig. 3a, along with theoretical fits to the experimental data (top curves). Also plotted are the contributions from the population of smaller scatterers (middle curves) and population of larger scatterers (bottom curves). (e), (f) Extracted populations for (e) granulocytes and (f) lymphocytes. Extractions for individual cells are shown by the thin curves, while population extractions for the cell-averaged signals are shown by the thick curves. Sizes up to 5 μm were explored in the fitting process.

Fig. 9
Fig. 9

Mean Raman spectra for lymphocytes (top curve) and granulocytes (bottom curve). Asterisks indicate areas of spectral difference between the two curves, with bands associated with nuclear material being stronger in the lymphocytes, as expected. Spectra are offset for clarity.

Tables (4)

Tables Icon

Table 1 Particle Size Distribution Extraction for Four Monodisperse Solutions

Tables Icon

Table 2 Particle Size Distribution Extraction for Three Mixed-Population Solutions

Tables Icon

Table 3 Population Extraction for Granulocytes and Lymphocytes

Tables Icon

Table 4 Raman Peak Differences between Granulocytes and Lymphocytes

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

7 μm
7 μm
5 μm
45 °
7 μm
1 mL
χ 2 ( a ) = i = 1 3 j = 1 N ( T l s ( a , θ j , ϕ i ) S ( θ j , ϕ i ) ) 2 ν j ,
12 μm
T ( θ , ϕ s ) = r 1 r 2 [ ρ ( μ 1 , σ 1 ) + c ρ ( μ 2 , σ 2 ) ] I ( r , θ , ϕ s ) d r ,
χ 2 ( μ 1 , μ 2 , σ 1 , σ 2 , c ) = i = 1 4 j = 1 N ( T l s ( θ j , ϕ i ) S ( θ j , ϕ i ) ) 2 ν j ,
1 μm

Metrics