Abstract

By using soluble fullerene derivative [60]PCBM, we improved photorefractive efficiency in polymer– liquid crystal composites in comparison to previous works on similar materials. We show the effect of polymer network results in resolution and bandwidth improvements compared to pure liquid crystals. This is explained by the introduction of a charge trapping mechanism, providing a memory effect for the composite. Based on this effect, we propose an approach for designing composites with higher grating efficiency and resolution.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723-1725 (1994).
    [CrossRef] [PubMed]
  2. E. V. Rudenko and A. V. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142-146 (1994).
  3. I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film,” Opt. Lett. 20, 2137-2139 (1995).
    [CrossRef] [PubMed]
  4. G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794-1797 (1995).
    [CrossRef]
  5. P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168-170 (2002).
    [CrossRef]
  6. J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25, 414-416 (2000).
    [CrossRef]
  7. W. Lee and C.-S. Chiu, “Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes,” Opt. Lett. 26, 521-523 (2001).
    [CrossRef]
  8. I. C. Khoo, S. Slussarenko, B. D. Guenther, Min-Yi Shih, P. Chen, and W. V. Wood, “Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253-255(1998).
    [CrossRef]
  9. H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals,” Opt. Lett. 22, 1144-1146 (1997).
    [CrossRef] [PubMed]
  10. H. Ono, H. Shimokawaa, A. Emotoa, N. Kawatsukib, “Effects of droplet size on photorefractive properties of polymer dispersed liquid crystals,” Polymer 44, 7971-7978 (2003).
    [CrossRef]
  11. A. Golemme, B. L. Volodin, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer-dispersed liquid crystals,” Opt. Lett. 22, 1226-1228 (1997).
    [CrossRef] [PubMed]
  12. J. G. Winiarz and P. N. Prasad, “Photorefractive inorganic organic polymer-dispersed liquid-crystal nanocomposite photosensitized with cadmium sulfide quantum dots,” Opt. Lett. 27, 1330-1332 (2002).
    [CrossRef]
  13. G. P. Wiederrecht, “Photorefractive liquid crystals,” Annu. Rev. Mater. Res. 31, 139-169 (2001).
    [CrossRef]
  14. H. Ono, A. Hanazawa, T. Kawamura, H. Norisada, and N. Kawatsuki, “Response characteristics of high-performance photorefractive mesogenic composites,” J. Appl. Phys. 86, 1785-1790 (1999).
    [CrossRef]
  15. N. Kawatsuki, H. Norisada, T. Yamamoto, H. Ono, and A. Emoto, “Photorefractivity in polymer dissolved liquid crystal composites composed of low-molecular-weight nematic liquid crystals and copolymer comprising mesogenic side groups,” Sci. Tech. Adv. Mater. 6, 158-164 (2005).
    [CrossRef]
  16. J. C. Hummelen, G. Yu, J. Gao, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789-1791 (1995).
    [CrossRef]
  17. A. Golemme, B. Kippelin, and N. Peyghambarian, “On the mechanism of orientational photorefractivity in polymer dispersed nematics,” Chem. Phys. Lett. 319, 655-660 (2000).
    [CrossRef]

2005 (1)

N. Kawatsuki, H. Norisada, T. Yamamoto, H. Ono, and A. Emoto, “Photorefractivity in polymer dissolved liquid crystal composites composed of low-molecular-weight nematic liquid crystals and copolymer comprising mesogenic side groups,” Sci. Tech. Adv. Mater. 6, 158-164 (2005).
[CrossRef]

2003 (1)

H. Ono, H. Shimokawaa, A. Emotoa, N. Kawatsukib, “Effects of droplet size on photorefractive properties of polymer dispersed liquid crystals,” Polymer 44, 7971-7978 (2003).
[CrossRef]

2002 (2)

2001 (2)

2000 (2)

A. Golemme, B. Kippelin, and N. Peyghambarian, “On the mechanism of orientational photorefractivity in polymer dispersed nematics,” Chem. Phys. Lett. 319, 655-660 (2000).
[CrossRef]

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25, 414-416 (2000).
[CrossRef]

1999 (1)

H. Ono, A. Hanazawa, T. Kawamura, H. Norisada, and N. Kawatsuki, “Response characteristics of high-performance photorefractive mesogenic composites,” J. Appl. Phys. 86, 1785-1790 (1999).
[CrossRef]

1998 (1)

1997 (2)

1995 (3)

J. C. Hummelen, G. Yu, J. Gao, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789-1791 (1995).
[CrossRef]

I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film,” Opt. Lett. 20, 2137-2139 (1995).
[CrossRef] [PubMed]

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794-1797 (1995).
[CrossRef]

1994 (2)

I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723-1725 (1994).
[CrossRef] [PubMed]

E. V. Rudenko and A. V. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142-146 (1994).

Chen, P.

Chiu, C.-S.

Cipparrone, G.

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168-170 (2002).
[CrossRef]

Emoto, A.

N. Kawatsuki, H. Norisada, T. Yamamoto, H. Ono, and A. Emoto, “Photorefractivity in polymer dissolved liquid crystal composites composed of low-molecular-weight nematic liquid crystals and copolymer comprising mesogenic side groups,” Sci. Tech. Adv. Mater. 6, 158-164 (2005).
[CrossRef]

Emotoa, A.

H. Ono, H. Shimokawaa, A. Emotoa, N. Kawatsukib, “Effects of droplet size on photorefractive properties of polymer dispersed liquid crystals,” Polymer 44, 7971-7978 (2003).
[CrossRef]

Gao, J.

J. C. Hummelen, G. Yu, J. Gao, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789-1791 (1995).
[CrossRef]

Golemme, A.

A. Golemme, B. Kippelin, and N. Peyghambarian, “On the mechanism of orientational photorefractivity in polymer dispersed nematics,” Chem. Phys. Lett. 319, 655-660 (2000).
[CrossRef]

A. Golemme, B. L. Volodin, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer-dispersed liquid crystals,” Opt. Lett. 22, 1226-1228 (1997).
[CrossRef] [PubMed]

Guenther, B. D.

Hanazawa, A.

H. Ono, A. Hanazawa, T. Kawamura, H. Norisada, and N. Kawatsuki, “Response characteristics of high-performance photorefractive mesogenic composites,” J. Appl. Phys. 86, 1785-1790 (1999).
[CrossRef]

Heeger, A. J.

J. C. Hummelen, G. Yu, J. Gao, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789-1791 (1995).
[CrossRef]

Hummelen, J. C.

J. C. Hummelen, G. Yu, J. Gao, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789-1791 (1995).
[CrossRef]

Kawamura, T.

H. Ono, A. Hanazawa, T. Kawamura, H. Norisada, and N. Kawatsuki, “Response characteristics of high-performance photorefractive mesogenic composites,” J. Appl. Phys. 86, 1785-1790 (1999).
[CrossRef]

Kawatsuki, N.

N. Kawatsuki, H. Norisada, T. Yamamoto, H. Ono, and A. Emoto, “Photorefractivity in polymer dissolved liquid crystal composites composed of low-molecular-weight nematic liquid crystals and copolymer comprising mesogenic side groups,” Sci. Tech. Adv. Mater. 6, 158-164 (2005).
[CrossRef]

H. Ono, A. Hanazawa, T. Kawamura, H. Norisada, and N. Kawatsuki, “Response characteristics of high-performance photorefractive mesogenic composites,” J. Appl. Phys. 86, 1785-1790 (1999).
[CrossRef]

H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals,” Opt. Lett. 22, 1144-1146 (1997).
[CrossRef] [PubMed]

Kawatsukib, N.

H. Ono, H. Shimokawaa, A. Emotoa, N. Kawatsukib, “Effects of droplet size on photorefractive properties of polymer dispersed liquid crystals,” Polymer 44, 7971-7978 (2003).
[CrossRef]

Khoo, I. C.

Kippelen, B.

Kippelin, B.

A. Golemme, B. Kippelin, and N. Peyghambarian, “On the mechanism of orientational photorefractivity in polymer dispersed nematics,” Chem. Phys. Lett. 319, 655-660 (2000).
[CrossRef]

Lee, W.

Li, H.

Liang, Y.

Norisada, H.

N. Kawatsuki, H. Norisada, T. Yamamoto, H. Ono, and A. Emoto, “Photorefractivity in polymer dissolved liquid crystal composites composed of low-molecular-weight nematic liquid crystals and copolymer comprising mesogenic side groups,” Sci. Tech. Adv. Mater. 6, 158-164 (2005).
[CrossRef]

H. Ono, A. Hanazawa, T. Kawamura, H. Norisada, and N. Kawatsuki, “Response characteristics of high-performance photorefractive mesogenic composites,” J. Appl. Phys. 86, 1785-1790 (1999).
[CrossRef]

Ono, H.

N. Kawatsuki, H. Norisada, T. Yamamoto, H. Ono, and A. Emoto, “Photorefractivity in polymer dissolved liquid crystal composites composed of low-molecular-weight nematic liquid crystals and copolymer comprising mesogenic side groups,” Sci. Tech. Adv. Mater. 6, 158-164 (2005).
[CrossRef]

H. Ono, H. Shimokawaa, A. Emotoa, N. Kawatsukib, “Effects of droplet size on photorefractive properties of polymer dispersed liquid crystals,” Polymer 44, 7971-7978 (2003).
[CrossRef]

H. Ono, A. Hanazawa, T. Kawamura, H. Norisada, and N. Kawatsuki, “Response characteristics of high-performance photorefractive mesogenic composites,” J. Appl. Phys. 86, 1785-1790 (1999).
[CrossRef]

H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals,” Opt. Lett. 22, 1144-1146 (1997).
[CrossRef] [PubMed]

Ostroverkhov, V.

Pagliusi, P.

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168-170 (2002).
[CrossRef]

Peyghambarian, N.

A. Golemme, B. Kippelin, and N. Peyghambarian, “On the mechanism of orientational photorefractivity in polymer dispersed nematics,” Chem. Phys. Lett. 319, 655-660 (2000).
[CrossRef]

A. Golemme, B. L. Volodin, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer-dispersed liquid crystals,” Opt. Lett. 22, 1226-1228 (1997).
[CrossRef] [PubMed]

Prasad, P. N.

Reshetnyak, V.

Reznikov, Yu.

Rudenko, E. V.

E. V. Rudenko and A. V. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142-146 (1994).

Shih, Min-Yi

Shimokawaa, H.

H. Ono, H. Shimokawaa, A. Emotoa, N. Kawatsukib, “Effects of droplet size on photorefractive properties of polymer dispersed liquid crystals,” Polymer 44, 7971-7978 (2003).
[CrossRef]

Singer, K. D.

Slussarenko, S.

Sukhov, A. V.

E. V. Rudenko and A. V. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142-146 (1994).

Volodin, B. L.

Wasielewski, M. R.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794-1797 (1995).
[CrossRef]

Wiederrecht, G. P.

G. P. Wiederrecht, “Photorefractive liquid crystals,” Annu. Rev. Mater. Res. 31, 139-169 (2001).
[CrossRef]

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794-1797 (1995).
[CrossRef]

Winiarz, J. G.

Wood, W. V.

Wudl, F.

J. C. Hummelen, G. Yu, J. Gao, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789-1791 (1995).
[CrossRef]

Yamamoto, T.

N. Kawatsuki, H. Norisada, T. Yamamoto, H. Ono, and A. Emoto, “Photorefractivity in polymer dissolved liquid crystal composites composed of low-molecular-weight nematic liquid crystals and copolymer comprising mesogenic side groups,” Sci. Tech. Adv. Mater. 6, 158-164 (2005).
[CrossRef]

Yoon, B. A.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794-1797 (1995).
[CrossRef]

Yu, G.

J. C. Hummelen, G. Yu, J. Gao, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789-1791 (1995).
[CrossRef]

Zhang, J.

Annu. Rev. Mater. Res. (1)

G. P. Wiederrecht, “Photorefractive liquid crystals,” Annu. Rev. Mater. Res. 31, 139-169 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168-170 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

A. Golemme, B. Kippelin, and N. Peyghambarian, “On the mechanism of orientational photorefractivity in polymer dispersed nematics,” Chem. Phys. Lett. 319, 655-660 (2000).
[CrossRef]

J. Appl. Phys. (1)

H. Ono, A. Hanazawa, T. Kawamura, H. Norisada, and N. Kawatsuki, “Response characteristics of high-performance photorefractive mesogenic composites,” J. Appl. Phys. 86, 1785-1790 (1999).
[CrossRef]

JETP Lett. (1)

E. V. Rudenko and A. V. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142-146 (1994).

Opt. Lett. (8)

I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film,” Opt. Lett. 20, 2137-2139 (1995).
[CrossRef] [PubMed]

A. Golemme, B. L. Volodin, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer-dispersed liquid crystals,” Opt. Lett. 22, 1226-1228 (1997).
[CrossRef] [PubMed]

J. G. Winiarz and P. N. Prasad, “Photorefractive inorganic organic polymer-dispersed liquid-crystal nanocomposite photosensitized with cadmium sulfide quantum dots,” Opt. Lett. 27, 1330-1332 (2002).
[CrossRef]

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25, 414-416 (2000).
[CrossRef]

W. Lee and C.-S. Chiu, “Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes,” Opt. Lett. 26, 521-523 (2001).
[CrossRef]

I. C. Khoo, S. Slussarenko, B. D. Guenther, Min-Yi Shih, P. Chen, and W. V. Wood, “Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253-255(1998).
[CrossRef]

H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals,” Opt. Lett. 22, 1144-1146 (1997).
[CrossRef] [PubMed]

I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723-1725 (1994).
[CrossRef] [PubMed]

Polymer (1)

H. Ono, H. Shimokawaa, A. Emotoa, N. Kawatsukib, “Effects of droplet size on photorefractive properties of polymer dispersed liquid crystals,” Polymer 44, 7971-7978 (2003).
[CrossRef]

Sci. Tech. Adv. Mater. (1)

N. Kawatsuki, H. Norisada, T. Yamamoto, H. Ono, and A. Emoto, “Photorefractivity in polymer dissolved liquid crystal composites composed of low-molecular-weight nematic liquid crystals and copolymer comprising mesogenic side groups,” Sci. Tech. Adv. Mater. 6, 158-164 (2005).
[CrossRef]

Science (2)

J. C. Hummelen, G. Yu, J. Gao, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789-1791 (1995).
[CrossRef]

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794-1797 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Photocurrent dependence on light intensity, normalized to the dark current value. M1 (squares), applied field 10 V / μm , dark current density 6 μA / cm 2 . M3 (circles), applied field 0.2 V / μm , dark current density 80 nA / cm 2 . Continuous line is a fit Δ σ / σ D I . Cell thickness equals 20 μm for both mixtures. Inset shows molecular structure of [60]PCBM.

Fig. 2
Fig. 2

Probe beam diffraction efficiency dependence on the writing beam intensity sum. M1, squares; M2, triangles; M3, circles. Grating periods for M 1 = M 2 = 8 μm , M 3 = 20 μm ; applied field 10 V / μm for M1 and M2, 0.2 V / μm for M3. Cell thickness = 20 μm . (M3, diffraction efficiency at low grating period was too low for accurate measurements.)

Fig. 3
Fig. 3

Probe beam diffraction efficiency dependence on grating period for a 20 μm sample. Writing beam intensity 50 mW / cm 2 . M1, squares; M2, triangles; M3, circles.

Fig. 4
Fig. 4

Phenomenological model for the diffraction efficiency increase mechanism via charge trapping. Increase in refractive index modulation due to higher LC reorientation in the absence of an external dc field (bottom figure). The local field is due to charges trapped in the polymer network.

Tables (1)

Tables Icon

Table 1 Mixture Composition

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ph = E ph 0 cos ( q ξ ) = ( m k B T 2 e q v Δ σ Δ σ + σ D ) cos ( q ξ ) .
q v Δ σ ( Δ σ + σ d ) ( q v Δ σ ( Δ σ + σ d ) + C TR ( t , Δ σ , q ) ) ,

Metrics