Abstract

The imaging and quantification of droplet sizes in sprays is a challenging task for optical scientists and engineers. Laser sheet dropsizing (LSDS) combines the two-dimensional information of two different optical processes, one that is proportional to the droplet volume and one that depends on the droplet surface, e.g., Mie scattering. Besides Mie scattering, here we use two-dimensional Raman scattering as the volume-dependent measurement technique. Two different calibration strategies are presented and discussed. Two-dimensional droplet size distributions in a spray have been validated in comparison with the results of point-resolved phase Doppler anemometry (PDA) measurements.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Dodge, D. J. Rhodes, and R. D. Reitz, “Drop-size measurement techniques for sprays: comparison of Malvern laser-diffraction and Aerometrics phase/Doppler,” Appl. Opt. 26, 2144-2154 (1987).
    [CrossRef] [PubMed]
  2. C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Measurement of drop sizes in unsteady dense sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K. K. Kuo, ed. (American Institute of Aeronautics and Astronautics, 1996), pp. 297-308.
  3. D. L. Hofeldt, “Full-field measurements of particle size distributions: I. theoretical limitations of the polarization ratio method,” Appl. Opt. 32, 7551-7558 (1993).
    [CrossRef] [PubMed]
  4. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  5. M. Kerker, The Scattering of Light (and Other Electromagnetic Radiation), Vol. 16 of Physical Chemistry (Academic, 1969).
  6. P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75-83(1999).
    [CrossRef]
  7. S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121, 409-414 (1999).
    [CrossRef]
  8. M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurements,” Appl. Phys. B 71, 703-710 (2000).
    [CrossRef]
  9. R. Domann and Y. Hardalupas, “Quantitative measurement of planar droplet Sauter mean diameter in sprays using planar droplet sizing,” Part. Part. Syst. Charact. 20, 209-218 (2003).
    [CrossRef]
  10. I. Düwel, J. Schorr, P. Peuser, P. Zeller, J. Wolfrum, and C. Schulz, “Spray diagnostics using an all-solid-state Nd:YAlO3 laser and fluorescence tracers in commercial gasoline and diesel fuels,” Appl. Phys. B 79, 249-254 (2004).
    [CrossRef]
  11. A. Malarski, J. Egermann, J. Zehnder, and A. Leipertz, “Simultaneous application of single-shot Ramanography and particle image velocimetry,” Opt. Lett. 31, 1005-1007 (2006).
    [CrossRef] [PubMed]
  12. D. L. Hofeldt, “Full-field measurements of particle size distributions: II. experimental comparison of the polarization ratio and scattered intensity methods,” Appl. Opt. 32, 7559-7567 (1993).
    [CrossRef] [PubMed]
  13. V. Beushausen, O. Thiele, T. Berg, H. Voges, T. Müller, F. Kallmeier, W. Hentschel, R. Grzeszik, J. Raimann, and S. Arndt, “Crank-angle resolved determination of fuel concentration and air/fuel-ratio inside a direct injection SI production engine under real fuel conditions,” in VIIth Congress Engine Combustion Processes--Current Problems and Modern Technologies, Berichte zur Energie- und Verfahrenstechnik (BEV) (ESYTEC Energie- und Systemtechnik GmbH Erlangen, 2005), pp. 187-197.
  14. A. Malarski and A. Leipertz, “Dependence of the stimulated Raman scattering threshold in droplets on the temporal stretching of a nanosecond laser pulse,” J. Raman Spectrosc. 39, 700-706 (2008).
    [CrossRef]

2008 (1)

A. Malarski and A. Leipertz, “Dependence of the stimulated Raman scattering threshold in droplets on the temporal stretching of a nanosecond laser pulse,” J. Raman Spectrosc. 39, 700-706 (2008).
[CrossRef]

2006 (1)

2005 (1)

V. Beushausen, O. Thiele, T. Berg, H. Voges, T. Müller, F. Kallmeier, W. Hentschel, R. Grzeszik, J. Raimann, and S. Arndt, “Crank-angle resolved determination of fuel concentration and air/fuel-ratio inside a direct injection SI production engine under real fuel conditions,” in VIIth Congress Engine Combustion Processes--Current Problems and Modern Technologies, Berichte zur Energie- und Verfahrenstechnik (BEV) (ESYTEC Energie- und Systemtechnik GmbH Erlangen, 2005), pp. 187-197.

2004 (1)

I. Düwel, J. Schorr, P. Peuser, P. Zeller, J. Wolfrum, and C. Schulz, “Spray diagnostics using an all-solid-state Nd:YAlO3 laser and fluorescence tracers in commercial gasoline and diesel fuels,” Appl. Phys. B 79, 249-254 (2004).
[CrossRef]

2003 (1)

R. Domann and Y. Hardalupas, “Quantitative measurement of planar droplet Sauter mean diameter in sprays using planar droplet sizing,” Part. Part. Syst. Charact. 20, 209-218 (2003).
[CrossRef]

2000 (1)

M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurements,” Appl. Phys. B 71, 703-710 (2000).
[CrossRef]

1999 (2)

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75-83(1999).
[CrossRef]

S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121, 409-414 (1999).
[CrossRef]

1996 (1)

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Measurement of drop sizes in unsteady dense sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K. K. Kuo, ed. (American Institute of Aeronautics and Astronautics, 1996), pp. 297-308.

1993 (2)

1987 (1)

1981 (1)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

1969 (1)

M. Kerker, The Scattering of Light (and Other Electromagnetic Radiation), Vol. 16 of Physical Chemistry (Academic, 1969).

Arndt, S.

V. Beushausen, O. Thiele, T. Berg, H. Voges, T. Müller, F. Kallmeier, W. Hentschel, R. Grzeszik, J. Raimann, and S. Arndt, “Crank-angle resolved determination of fuel concentration and air/fuel-ratio inside a direct injection SI production engine under real fuel conditions,” in VIIth Congress Engine Combustion Processes--Current Problems and Modern Technologies, Berichte zur Energie- und Verfahrenstechnik (BEV) (ESYTEC Energie- und Systemtechnik GmbH Erlangen, 2005), pp. 187-197.

Bachalo, W. D.

S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121, 409-414 (1999).
[CrossRef]

Berg, T.

V. Beushausen, O. Thiele, T. Berg, H. Voges, T. Müller, F. Kallmeier, W. Hentschel, R. Grzeszik, J. Raimann, and S. Arndt, “Crank-angle resolved determination of fuel concentration and air/fuel-ratio inside a direct injection SI production engine under real fuel conditions,” in VIIth Congress Engine Combustion Processes--Current Problems and Modern Technologies, Berichte zur Energie- und Verfahrenstechnik (BEV) (ESYTEC Energie- und Systemtechnik GmbH Erlangen, 2005), pp. 187-197.

Beushausen, V.

V. Beushausen, O. Thiele, T. Berg, H. Voges, T. Müller, F. Kallmeier, W. Hentschel, R. Grzeszik, J. Raimann, and S. Arndt, “Crank-angle resolved determination of fuel concentration and air/fuel-ratio inside a direct injection SI production engine under real fuel conditions,” in VIIth Congress Engine Combustion Processes--Current Problems and Modern Technologies, Berichte zur Energie- und Verfahrenstechnik (BEV) (ESYTEC Energie- und Systemtechnik GmbH Erlangen, 2005), pp. 187-197.

Dodge, L. G.

Domann, R.

R. Domann and Y. Hardalupas, “Quantitative measurement of planar droplet Sauter mean diameter in sprays using planar droplet sizing,” Part. Part. Syst. Charact. 20, 209-218 (2003).
[CrossRef]

Düwel, I.

I. Düwel, J. Schorr, P. Peuser, P. Zeller, J. Wolfrum, and C. Schulz, “Spray diagnostics using an all-solid-state Nd:YAlO3 laser and fluorescence tracers in commercial gasoline and diesel fuels,” Appl. Phys. B 79, 249-254 (2004).
[CrossRef]

Egermann, J.

Farrugia, N.

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75-83(1999).
[CrossRef]

Greenhalgh, D. A.

M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurements,” Appl. Phys. B 71, 703-710 (2000).
[CrossRef]

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75-83(1999).
[CrossRef]

Grzeszik, R.

V. Beushausen, O. Thiele, T. Berg, H. Voges, T. Müller, F. Kallmeier, W. Hentschel, R. Grzeszik, J. Raimann, and S. Arndt, “Crank-angle resolved determination of fuel concentration and air/fuel-ratio inside a direct injection SI production engine under real fuel conditions,” in VIIth Congress Engine Combustion Processes--Current Problems and Modern Technologies, Berichte zur Energie- und Verfahrenstechnik (BEV) (ESYTEC Energie- und Systemtechnik GmbH Erlangen, 2005), pp. 187-197.

Hardalupas, Y.

R. Domann and Y. Hardalupas, “Quantitative measurement of planar droplet Sauter mean diameter in sprays using planar droplet sizing,” Part. Part. Syst. Charact. 20, 209-218 (2003).
[CrossRef]

Hentschel, W.

V. Beushausen, O. Thiele, T. Berg, H. Voges, T. Müller, F. Kallmeier, W. Hentschel, R. Grzeszik, J. Raimann, and S. Arndt, “Crank-angle resolved determination of fuel concentration and air/fuel-ratio inside a direct injection SI production engine under real fuel conditions,” in VIIth Congress Engine Combustion Processes--Current Problems and Modern Technologies, Berichte zur Energie- und Verfahrenstechnik (BEV) (ESYTEC Energie- und Systemtechnik GmbH Erlangen, 2005), pp. 187-197.

Hofeldt, D. L.

Jermy, M. C.

M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurements,” Appl. Phys. B 71, 703-710 (2000).
[CrossRef]

Kallmeier, F.

V. Beushausen, O. Thiele, T. Berg, H. Voges, T. Müller, F. Kallmeier, W. Hentschel, R. Grzeszik, J. Raimann, and S. Arndt, “Crank-angle resolved determination of fuel concentration and air/fuel-ratio inside a direct injection SI production engine under real fuel conditions,” in VIIth Congress Engine Combustion Processes--Current Problems and Modern Technologies, Berichte zur Energie- und Verfahrenstechnik (BEV) (ESYTEC Energie- und Systemtechnik GmbH Erlangen, 2005), pp. 187-197.

Kamimoto, T.

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Measurement of drop sizes in unsteady dense sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K. K. Kuo, ed. (American Institute of Aeronautics and Astronautics, 1996), pp. 297-308.

Kerker, M.

M. Kerker, The Scattering of Light (and Other Electromagnetic Radiation), Vol. 16 of Physical Chemistry (Academic, 1969).

Kosaka, H.

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Measurement of drop sizes in unsteady dense sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K. K. Kuo, ed. (American Institute of Aeronautics and Astronautics, 1996), pp. 297-308.

Le Gal, P.

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75-83(1999).
[CrossRef]

Leipertz, A.

A. Malarski and A. Leipertz, “Dependence of the stimulated Raman scattering threshold in droplets on the temporal stretching of a nanosecond laser pulse,” J. Raman Spectrosc. 39, 700-706 (2008).
[CrossRef]

A. Malarski, J. Egermann, J. Zehnder, and A. Leipertz, “Simultaneous application of single-shot Ramanography and particle image velocimetry,” Opt. Lett. 31, 1005-1007 (2006).
[CrossRef] [PubMed]

Maher, K. E.

S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121, 409-414 (1999).
[CrossRef]

Malarski, A.

A. Malarski and A. Leipertz, “Dependence of the stimulated Raman scattering threshold in droplets on the temporal stretching of a nanosecond laser pulse,” J. Raman Spectrosc. 39, 700-706 (2008).
[CrossRef]

A. Malarski, J. Egermann, J. Zehnder, and A. Leipertz, “Simultaneous application of single-shot Ramanography and particle image velocimetry,” Opt. Lett. 31, 1005-1007 (2006).
[CrossRef] [PubMed]

Müller, T.

V. Beushausen, O. Thiele, T. Berg, H. Voges, T. Müller, F. Kallmeier, W. Hentschel, R. Grzeszik, J. Raimann, and S. Arndt, “Crank-angle resolved determination of fuel concentration and air/fuel-ratio inside a direct injection SI production engine under real fuel conditions,” in VIIth Congress Engine Combustion Processes--Current Problems and Modern Technologies, Berichte zur Energie- und Verfahrenstechnik (BEV) (ESYTEC Energie- und Systemtechnik GmbH Erlangen, 2005), pp. 187-197.

Peuser, P.

I. Düwel, J. Schorr, P. Peuser, P. Zeller, J. Wolfrum, and C. Schulz, “Spray diagnostics using an all-solid-state Nd:YAlO3 laser and fluorescence tracers in commercial gasoline and diesel fuels,” Appl. Phys. B 79, 249-254 (2004).
[CrossRef]

Raimann, J.

V. Beushausen, O. Thiele, T. Berg, H. Voges, T. Müller, F. Kallmeier, W. Hentschel, R. Grzeszik, J. Raimann, and S. Arndt, “Crank-angle resolved determination of fuel concentration and air/fuel-ratio inside a direct injection SI production engine under real fuel conditions,” in VIIth Congress Engine Combustion Processes--Current Problems and Modern Technologies, Berichte zur Energie- und Verfahrenstechnik (BEV) (ESYTEC Energie- und Systemtechnik GmbH Erlangen, 2005), pp. 187-197.

Reitz, R. D.

Rhodes, D. J.

Robart, D. M.

S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121, 409-414 (1999).
[CrossRef]

Sankar, S. V.

S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121, 409-414 (1999).
[CrossRef]

Schorr, J.

I. Düwel, J. Schorr, P. Peuser, P. Zeller, J. Wolfrum, and C. Schulz, “Spray diagnostics using an all-solid-state Nd:YAlO3 laser and fluorescence tracers in commercial gasoline and diesel fuels,” Appl. Phys. B 79, 249-254 (2004).
[CrossRef]

Schulz, C.

I. Düwel, J. Schorr, P. Peuser, P. Zeller, J. Wolfrum, and C. Schulz, “Spray diagnostics using an all-solid-state Nd:YAlO3 laser and fluorescence tracers in commercial gasoline and diesel fuels,” Appl. Phys. B 79, 249-254 (2004).
[CrossRef]

Thiele, O.

V. Beushausen, O. Thiele, T. Berg, H. Voges, T. Müller, F. Kallmeier, W. Hentschel, R. Grzeszik, J. Raimann, and S. Arndt, “Crank-angle resolved determination of fuel concentration and air/fuel-ratio inside a direct injection SI production engine under real fuel conditions,” in VIIth Congress Engine Combustion Processes--Current Problems and Modern Technologies, Berichte zur Energie- und Verfahrenstechnik (BEV) (ESYTEC Energie- und Systemtechnik GmbH Erlangen, 2005), pp. 187-197.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Voges, H.

V. Beushausen, O. Thiele, T. Berg, H. Voges, T. Müller, F. Kallmeier, W. Hentschel, R. Grzeszik, J. Raimann, and S. Arndt, “Crank-angle resolved determination of fuel concentration and air/fuel-ratio inside a direct injection SI production engine under real fuel conditions,” in VIIth Congress Engine Combustion Processes--Current Problems and Modern Technologies, Berichte zur Energie- und Verfahrenstechnik (BEV) (ESYTEC Energie- und Systemtechnik GmbH Erlangen, 2005), pp. 187-197.

Wolfrum, J.

I. Düwel, J. Schorr, P. Peuser, P. Zeller, J. Wolfrum, and C. Schulz, “Spray diagnostics using an all-solid-state Nd:YAlO3 laser and fluorescence tracers in commercial gasoline and diesel fuels,” Appl. Phys. B 79, 249-254 (2004).
[CrossRef]

Yeh, C.-N.

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Measurement of drop sizes in unsteady dense sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K. K. Kuo, ed. (American Institute of Aeronautics and Astronautics, 1996), pp. 297-308.

Zehnder, J.

Zeller, P.

I. Düwel, J. Schorr, P. Peuser, P. Zeller, J. Wolfrum, and C. Schulz, “Spray diagnostics using an all-solid-state Nd:YAlO3 laser and fluorescence tracers in commercial gasoline and diesel fuels,” Appl. Phys. B 79, 249-254 (2004).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (2)

I. Düwel, J. Schorr, P. Peuser, P. Zeller, J. Wolfrum, and C. Schulz, “Spray diagnostics using an all-solid-state Nd:YAlO3 laser and fluorescence tracers in commercial gasoline and diesel fuels,” Appl. Phys. B 79, 249-254 (2004).
[CrossRef]

M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurements,” Appl. Phys. B 71, 703-710 (2000).
[CrossRef]

J. Eng. Gas Turbines Power (1)

S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121, 409-414 (1999).
[CrossRef]

J. Raman Spectrosc. (1)

A. Malarski and A. Leipertz, “Dependence of the stimulated Raman scattering threshold in droplets on the temporal stretching of a nanosecond laser pulse,” J. Raman Spectrosc. 39, 700-706 (2008).
[CrossRef]

Opt. Laser Technol. (1)

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75-83(1999).
[CrossRef]

Opt. Lett. (1)

Part. Part. Syst. Charact. (1)

R. Domann and Y. Hardalupas, “Quantitative measurement of planar droplet Sauter mean diameter in sprays using planar droplet sizing,” Part. Part. Syst. Charact. 20, 209-218 (2003).
[CrossRef]

Other (4)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

M. Kerker, The Scattering of Light (and Other Electromagnetic Radiation), Vol. 16 of Physical Chemistry (Academic, 1969).

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Measurement of drop sizes in unsteady dense sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K. K. Kuo, ed. (American Institute of Aeronautics and Astronautics, 1996), pp. 297-308.

V. Beushausen, O. Thiele, T. Berg, H. Voges, T. Müller, F. Kallmeier, W. Hentschel, R. Grzeszik, J. Raimann, and S. Arndt, “Crank-angle resolved determination of fuel concentration and air/fuel-ratio inside a direct injection SI production engine under real fuel conditions,” in VIIth Congress Engine Combustion Processes--Current Problems and Modern Technologies, Berichte zur Energie- und Verfahrenstechnik (BEV) (ESYTEC Energie- und Systemtechnik GmbH Erlangen, 2005), pp. 187-197.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup of the laser sheet dropsizing technique.

Fig. 2
Fig. 2

Experimental setup for the PDA measurements.

Fig. 3
Fig. 3

Calibration curve of the Raman–Mie signal ratio against the diameter of monodisperse droplets.

Fig. 4
Fig. 4

Calibration curve of the Raman–Mie signal ratio against the SMD measured with PDA.

Fig. 5
Fig. 5

Ratio of the summed Raman–Mie intensity dependent on the droplet number for droplets with a mean diameter of 93.7 μm .

Fig. 6
Fig. 6

Comparison of the calculated SMD and the measured SMD of 400 droplets with different diameter.

Fig. 7
Fig. 7

Isooctane spray, droplet SMD calibrated with PDA measurements.

Fig. 8
Fig. 8

Isooctane spray, droplet diameter calibrated with the droplet generator.

Fig. 9
Fig. 9

Comparison of the measured droplet sizes at the position x = 20 mm and y = 0 mm . , laser sheet dropsizing calibrated with PDA measurements; ▵, laser sheet dropsizing calibrated with the droplet generator; × PDA measurements with 10 μs integration time; . PDA measurements with 25 μs integration time; □ PDA measurements with 50 μs integration time.

Fig. 10
Fig. 10

Comparison of the measured droplet sizes at the position x = 20 mm and y = 8 mm . , laser sheet dropsizing calibrated with PDA measurements; ▵, laser sheet dropsizing calibrated with the droplet generator; ×, PDA measurements with 10 μs integration time; , PDA measurements with 25 μs integration time; □ PDA measurements with 50 μs integration time.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SMD = i = 0 N d i 3 i = 0 N d i 2 .
I R I M = K i = 0 N d i 3 i = 0 N d i 2 .

Metrics