Abstract

A novel scheme for a flashlamp-pumped ultrahigh-gain laser amplifier is presented. It is based on a monolithic slab design achieving a gain of 105. The measured ratio between pulse and prepulse output power was 5×107.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid State Laser Engineering (Springer Verlag, 1999).
  2. W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, “The National Ignition Facility,” Nucl. Fusion 41, 567-573 (2001).
    [CrossRef]
  3. T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
    [CrossRef]
  4. P. Bado, M. Bouvier, and J. Scott Coe, “Nd/YLF mode locked oscillator and regenerative amplifier,” Opt. Lett. 12, 319-321 (1987).
    [CrossRef] [PubMed]
  5. P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, and A. Brun, “High-efficiency multipass Ti:sapphire amplifiers for a continuous-wave single-mode laser,” Opt. Lett. 16, 144-146(1991).
    [PubMed]
  6. H. Plawssmann, S. A. Re, J. J. Alonis, D. L. Vecht, and William M. Grossman, “multipass diode pumped solid state optical amplifier,” Opt. Lett. 18, 1420-1422 (1993).
    [CrossRef]
  7. A. M. Scott, G. Cook, and A. P. G. Davies, “Efficient high-gain laser amplification from a low-gain amplifier by use of self-imaging multipass geometry,” Appl. Opt. 40, 2461-2467(2001).
    [CrossRef]
  8. M. Gong, Q. Wang, L. Huang, D. Lu, and Q. Liu, “Efficient multi-folded Nd:YVO4 slab amplifier,” Opt. Express 16, 3349-3355 (2008).
    [CrossRef] [PubMed]
  9. O. Svelto, S. Taccheo, and C. Svelto, “Analysis of amplified spontaneous emission: some corrections to the Linford formula,” Opt. Commun. 149, 277-282 (1998).
    [CrossRef]

2008 (1)

2001 (2)

A. M. Scott, G. Cook, and A. P. G. Davies, “Efficient high-gain laser amplification from a low-gain amplifier by use of self-imaging multipass geometry,” Appl. Opt. 40, 2461-2467(2001).
[CrossRef]

W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, “The National Ignition Facility,” Nucl. Fusion 41, 567-573 (2001).
[CrossRef]

1999 (1)

W. Koechner, Solid State Laser Engineering (Springer Verlag, 1999).

1998 (1)

O. Svelto, S. Taccheo, and C. Svelto, “Analysis of amplified spontaneous emission: some corrections to the Linford formula,” Opt. Commun. 149, 277-282 (1998).
[CrossRef]

1997 (1)

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

1993 (1)

1991 (1)

1987 (1)

Alonis, J. J.

Bado, P.

Boehly, T. R.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Bouvier, M.

Brown, D. L.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Brun, A.

Coe, J. Scott

Cook, G.

Craxton, R. S.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Davies, A. P. G.

Estable, F.

Georges, P.

Gong, M.

Grangier, P.

Grossman, William M.

Hogan, W. J.

W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, “The National Ignition Facility,” Nucl. Fusion 41, 567-573 (2001).
[CrossRef]

Huang, L.

Keck, R. L.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Kelly, J. H.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Kessler, T. J.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Knauer, J. P.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer Verlag, 1999).

Kumpan, S. A.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Letzring, S. A.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Liu, Q.

Loucks, S. J.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Lu, D.

Marshall, F. J.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

McCrory, R. L.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Morse, S. F. B.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Moses, E. I.

W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, “The National Ignition Facility,” Nucl. Fusion 41, 567-573 (2001).
[CrossRef]

Plawssmann, H.

Poizat, J. P.

Re, S. A.

Salin, F.

Scott, A. M.

Seka, W.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Sorem, M. S.

W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, “The National Ignition Facility,” Nucl. Fusion 41, 567-573 (2001).
[CrossRef]

Soures, J. M.

W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, “The National Ignition Facility,” Nucl. Fusion 41, 567-573 (2001).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Svelto, C.

O. Svelto, S. Taccheo, and C. Svelto, “Analysis of amplified spontaneous emission: some corrections to the Linford formula,” Opt. Commun. 149, 277-282 (1998).
[CrossRef]

Svelto, O.

O. Svelto, S. Taccheo, and C. Svelto, “Analysis of amplified spontaneous emission: some corrections to the Linford formula,” Opt. Commun. 149, 277-282 (1998).
[CrossRef]

Taccheo, S.

O. Svelto, S. Taccheo, and C. Svelto, “Analysis of amplified spontaneous emission: some corrections to the Linford formula,” Opt. Commun. 149, 277-282 (1998).
[CrossRef]

Vecht, D. L.

Verdon, C. P.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

Wang, Q.

Warner, B. E.

W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, “The National Ignition Facility,” Nucl. Fusion 41, 567-573 (2001).
[CrossRef]

Appl. Opt. (1)

Nucl. Fusion (1)

W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, “The National Ignition Facility,” Nucl. Fusion 41, 567-573 (2001).
[CrossRef]

Opt. Commun. (2)

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495-506 (1997).
[CrossRef]

O. Svelto, S. Taccheo, and C. Svelto, “Analysis of amplified spontaneous emission: some corrections to the Linford formula,” Opt. Commun. 149, 277-282 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (1)

W. Koechner, Solid State Laser Engineering (Springer Verlag, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (28)

Fig. 1
Fig. 1

Ray tracing of a beam in a cavity with mirrors tilted at an angle β.

Fig. 2
Fig. 2

Pump chamber, which includes the slab, flashlamps (only the left pair was used), shaped reflectors, and a blast shield.

Fig. 3
Fig. 3

Nd:glass slab used for the 13-pass amplifier.

Fig. 4
Fig. 4

View from the top of the experimental setup used to measure the gain at different distances from the edge of the slab.

Fig. 5
Fig. 5

Gain for a flashlamp pumping energy of 1000 J at (a)  1.35 mm , (b)  2.3 mm , and (c)  4.6 mm from the edge of the slab.

Fig. 6
Fig. 6

Experimental setup of the 13-pass amplifier.

Fig. 7
Fig. 7

View of the 13-pass amplifier from the top.

Fig. 8
Fig. 8

Two-Xe-flashlamp pumped Nd:glass amplifier.

Fig. 9
Fig. 9

Exit beam and the six points at which the beam is incident on the 90 % R mirror. The two bottom points slightly overlap.

Fig. 10
Fig. 10

Laser beam and the ASE on a screen, recorded by a CCD camera.

Fig. 11
Fig. 11

Gain of a 100 mW CW laser (black curve) and of the 80 ns Q -switched laser (gray curve) versus the pumping lamp energy.

Fig. 12
Fig. 12

Mechanical drawing of the monolithic slab. The HR, AR, and cladding are on the input–output facets.

Fig. 13
Fig. 13

Slab viewed from the front. The angle β is responsible for the down–up propagation of the beam. α 0 is the angle of the beam that enters the slab.

Fig. 14
Fig. 14

Nd:glass slab viewed from the from the top.

Fig. 15
Fig. 15

Photograph of the beam propagating through the amplifier. The window represents the area pumped by the flashlamps.

Fig. 16
Fig. 16

Monolithic amplifier experimental setup.

Fig. 17
Fig. 17

Gain of the 13-pass monolithic amplifier.

Fig. 18
Fig. 18

Temporal shape of a 12 nJ pulse after the amplifier without (black) and with (gray) gain; the pumping energy is 1040 J . The energy of the amplified pulse is 1.34 mJ .

Fig. 19
Fig. 19

Temporal shape of a 0.35 μJ pulse (black) and the amplified (gray) pulse in the monolithic amplifier; the pumping energy is 1040 J . The energy of the amplified pulse is 41.9 mJ .

Fig. 20
Fig. 20

Far-field profile after the pinhole in Fig. 16: (a) with no gain, dimensions ϕ x = 2.02 mm and ϕ y = 2.09 mm ; (b) with gain of 120,000, ϕ x = 1.98 mm , ϕ y = 2.12 mm .

Fig. 21
Fig. 21

Gain for increasing input energies, for a 3 mm beam diameter.

Fig. 22
Fig. 22

Stored energy and the small-signal gain coefficient ( g 0 ) per pass.

Fig. 23
Fig. 23

Estimated output energy for various input energies.

Fig. 24
Fig. 24

(a) ASE power versus time for various flashlamp pumping energies; (b) peak power of the ASE versus flashlamp pumping energy.

Fig. 25
Fig. 25

ASE beam shape via isolator for a pumping energy of 800 J . The ellipse is at the half-maximum of the ASE.

Fig. 26
Fig. 26

Area narrowing of the ASE with the increase of the gain.

Fig. 27
Fig. 27

Theoretical and experimental ASE.

Fig. 28
Fig. 28

ASE and the laser. The drop in the signal is due to the energy that the laser used.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ASE = ϕ I s ( Ω 4 π ) ( G 1 ) 3 / 2 ( π G ln G ) 1 / 2 ,
I ASE expt = P ASE max 0.85 × A T ,
Q

Metrics