Abstract

We present in-depth discussion of the design and optimization of a nanomechanical sensor using a silicon cantilever comprising a two-dimensional photonic crystal (PC) nanocavity resonator arranged in a U-shaped silicon PC waveguide. For example, the minimum detectable strain, vertical deflection at the cantilever end, and force load are observed as 0.0133%, 0.37μm, and 0.0625μN, respectively, for a 30μm long and 15μm wide cantilever. In the graph of strain versus resonant wavelength shift, a rather linear relationship is observed for various data derived from different cantilevers. Both the resonant wavelength and the resonant wavelength shift of cantilevers under deformation or force loads are mainly a function of defect length change. Results point out that all these mechanical parameters are mainly dependent on the defect length of the PC nanocavity resonator. This new PC cantilever sensor shows promising linear characteristics as an optical nanomechanical sensor.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-C. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034-1036 (2005).
    [CrossRef]
  2. G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005).
    [CrossRef]
  3. J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202-208 (2007).
    [CrossRef]
  4. K. Takahashi, Y. Kanamori, and K. Hane, in Proceedings of the IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2008), pp. 23-24.
    [CrossRef]
  5. M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18, 358-360 (2006).
    [CrossRef]
  6. A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita, and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices,” IEICE Electron. Express 3, 39-43 (2006).
    [CrossRef]
  7. S. Jun and Y.-S. Cho, “Deformation-induced bandgap tuning of 2D silicon-based photonic crystals,” Opt. Express 11, 2769-2774 (2003).
    [CrossRef] [PubMed]
  8. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999-2001 (2003).
    [CrossRef]
  9. W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005).
    [CrossRef]
  10. O. Levy, B. Z. Steinberg, N. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86, 104102 (2005).
    [CrossRef]
  11. Z. Xu, L. Cao, C. Gu, Q. He, and G. Jin, “Micro displacement sensor based on line-defect resonant cavity in photonic crystal,” Opt. Express 14, 298-305 (2006).
    [CrossRef] [PubMed]
  12. I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
    [CrossRef]
  13. C. Lee, R. Radhakrishnan, C.-C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, “Design and modeling of a nanomechanical sensor using silicon photonic crystals,” J. Lightwave Technol. 26, 839-846 (2008).
    [CrossRef]
  14. D. R. Baselt, G. U. Lee, K. M. Hansen, L. A. Chrisey, and R. J. Colton, “A high-sensitivity micromachined biosensor,” Proc. IEEE 85, 672-680 (1997).
    [CrossRef]
  15. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75, 2229-2253 (2004).
    [CrossRef]
  16. C. Ziegler, “Cantilever-based biosensors,” Anal. Bioanal. Chem. 379, 946-959 (2004).
    [CrossRef] [PubMed]
  17. R. Raiteri, M. Grattarola, H.-J. Butt, and Petr Skladal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115-126 (2001).
    [CrossRef]
  18. Z. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys. 90, 427-431 (2001).
    [CrossRef]
  19. G. Meyer and N. M. Amer, “Novel optical approach to atomic force microscopy,” Appl. Phys. Lett. 53, 1045-1047 (1988).
    [CrossRef]
  20. M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62, 834-836 (1993).
    [CrossRef]
  21. T. Itoh and T. Suga, “Development of a force sensor for atomic force microscopy using piezoelectric thin films,” Nanotechnol. 4, 218-224 (1993).
    [CrossRef]
  22. C. Lee, T. Itoh, R. Maeda, and T. Suga, “Characterization of micromachined piezoelectric PZT force sensors for dynamic scanning force microscopy,” Rev. Sci. Instrum. 68, 2091-2100 (1997).
    [CrossRef]
  23. C. Lee, T. Itoh, and T. Suga, “Self-excited piezoelectric PZT microcantilevers for dynamic SFM with inherent sensing and actuating capabilities,” Sens. Actuators A 72, 179-188 (1999).
    [CrossRef]
  24. J. Brugger, R. A. Buser, and N. F. de Rooij, “Micromachined atomic force microprobe with integrated capacitive read-out,” J. Micromech. Microeng. 2, 218-220 (1992).
    [CrossRef]
  25. T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, C. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B 18, 2669-2675 (2000).
    [CrossRef]
  26. H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999).
    [CrossRef]
  27. D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, and H. Baltes, “Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds,” Anal. Chem. 74, 3084-3095 (2002).
    [CrossRef] [PubMed]
  28. Y.-S. Kim, H.-J. Nam, S.-M. Cho, J.-W. Hong, D.-C. Kim, and J. U. Bu, “PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM,” Sens. Actuators A 103, 122-129 (2003).
    [CrossRef]
  29. S. Shin, J. P. Kim, S. J. Sim, and J. Lee, “A multisized piezoelectric microcantilever biosensor array for the quantitative analysis of mass and surface stress,” Appl. Phys. Lett. 93, 102902 (2008).
    [CrossRef]
  30. C. A. Barrios, “Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator,” IEEE Photon. Technol. Lett. 18, 2419-2421 (2006).
    [CrossRef]
  31. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
    [CrossRef]
  32. P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
    [CrossRef]
  33. P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, R. Wehrspohn, U. Gösele, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal resonator,” Opt. Lett. 29, 174-176 (2004).
    [CrossRef] [PubMed]
  34. C. E. Png, S. T. Lim, E. P. L. Graham, and T. Reed, “Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities,” IEEE Trans. Nanotechnol. 5, 478-484 (2006).
    [CrossRef]
  35. C. E. Png and S. T. Lim, “Silicon optical nanocavities for multiple sensing,” J. Lightwave Technol. 26, 1524-1531 (2008).
    [CrossRef]
  36. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16, 1623-1631 (2008).
    [CrossRef] [PubMed]
  37. C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008).
    [CrossRef]
  38. http://www.coventor.com/coventorware/
  39. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (Wiley, 2001).
    [PubMed]

2008 (6)

S. Shin, J. P. Kim, S. J. Sim, and J. Lee, “A multisized piezoelectric microcantilever biosensor array for the quantitative analysis of mass and surface stress,” Appl. Phys. Lett. 93, 102902 (2008).
[CrossRef]

K. Takahashi, Y. Kanamori, and K. Hane, in Proceedings of the IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2008), pp. 23-24.
[CrossRef]

C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16, 1623-1631 (2008).
[CrossRef] [PubMed]

C. Lee, R. Radhakrishnan, C.-C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, “Design and modeling of a nanomechanical sensor using silicon photonic crystals,” J. Lightwave Technol. 26, 839-846 (2008).
[CrossRef]

C. E. Png and S. T. Lim, “Silicon optical nanocavities for multiple sensing,” J. Lightwave Technol. 26, 1524-1531 (2008).
[CrossRef]

2007 (2)

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202-208 (2007).
[CrossRef]

2006 (5)

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18, 358-360 (2006).
[CrossRef]

A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita, and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices,” IEICE Electron. Express 3, 39-43 (2006).
[CrossRef]

C. E. Png, S. T. Lim, E. P. L. Graham, and T. Reed, “Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities,” IEEE Trans. Nanotechnol. 5, 478-484 (2006).
[CrossRef]

C. A. Barrios, “Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator,” IEEE Photon. Technol. Lett. 18, 2419-2421 (2006).
[CrossRef]

Z. Xu, L. Cao, C. Gu, Q. He, and G. Jin, “Micro displacement sensor based on line-defect resonant cavity in photonic crystal,” Opt. Express 14, 298-305 (2006).
[CrossRef] [PubMed]

2005 (4)

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

O. Levy, B. Z. Steinberg, N. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86, 104102 (2005).
[CrossRef]

M.-C. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034-1036 (2005).
[CrossRef]

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005).
[CrossRef]

2004 (3)

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, R. Wehrspohn, U. Gösele, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal resonator,” Opt. Lett. 29, 174-176 (2004).
[CrossRef] [PubMed]

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75, 2229-2253 (2004).
[CrossRef]

C. Ziegler, “Cantilever-based biosensors,” Anal. Bioanal. Chem. 379, 946-959 (2004).
[CrossRef] [PubMed]

2003 (3)

Y.-S. Kim, H.-J. Nam, S.-M. Cho, J.-W. Hong, D.-C. Kim, and J. U. Bu, “PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM,” Sens. Actuators A 103, 122-129 (2003).
[CrossRef]

S. Jun and Y.-S. Cho, “Deformation-induced bandgap tuning of 2D silicon-based photonic crystals,” Opt. Express 11, 2769-2774 (2003).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

2002 (1)

D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, and H. Baltes, “Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds,” Anal. Chem. 74, 3084-3095 (2002).
[CrossRef] [PubMed]

2001 (4)

R. Raiteri, M. Grattarola, H.-J. Butt, and Petr Skladal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115-126 (2001).
[CrossRef]

Z. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys. 90, 427-431 (2001).
[CrossRef]

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (Wiley, 2001).
[PubMed]

2000 (1)

T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, C. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B 18, 2669-2675 (2000).
[CrossRef]

1999 (2)

H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999).
[CrossRef]

C. Lee, T. Itoh, and T. Suga, “Self-excited piezoelectric PZT microcantilevers for dynamic SFM with inherent sensing and actuating capabilities,” Sens. Actuators A 72, 179-188 (1999).
[CrossRef]

1997 (3)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

D. R. Baselt, G. U. Lee, K. M. Hansen, L. A. Chrisey, and R. J. Colton, “A high-sensitivity micromachined biosensor,” Proc. IEEE 85, 672-680 (1997).
[CrossRef]

C. Lee, T. Itoh, R. Maeda, and T. Suga, “Characterization of micromachined piezoelectric PZT force sensors for dynamic scanning force microscopy,” Rev. Sci. Instrum. 68, 2091-2100 (1997).
[CrossRef]

1993 (2)

M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62, 834-836 (1993).
[CrossRef]

T. Itoh and T. Suga, “Development of a force sensor for atomic force microscopy using piezoelectric thin films,” Nanotechnol. 4, 218-224 (1993).
[CrossRef]

1992 (1)

J. Brugger, R. A. Buser, and N. F. de Rooij, “Micromachined atomic force microprobe with integrated capacitive read-out,” J. Micromech. Microeng. 2, 218-220 (1992).
[CrossRef]

1988 (1)

G. Meyer and N. M. Amer, “Novel optical approach to atomic force microscopy,” Appl. Phys. Lett. 53, 1045-1047 (1988).
[CrossRef]

Agio, M.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Akiyama, T.

T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, C. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B 18, 2669-2675 (2000).
[CrossRef]

Amer, N. M.

G. Meyer and N. M. Amer, “Novel optical approach to atomic force microscopy,” Appl. Phys. Lett. 53, 1045-1047 (1988).
[CrossRef]

Arakawa, Y.

A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita, and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices,” IEICE Electron. Express 3, 39-43 (2006).
[CrossRef]

Avrahami, Y.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005).
[CrossRef]

Baets, R.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Balasubramanian, N.

Baller, M. K.

H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999).
[CrossRef]

Baltes, H.

D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, and H. Baltes, “Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds,” Anal. Chem. 74, 3084-3095 (2002).
[CrossRef] [PubMed]

T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, C. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B 18, 2669-2675 (2000).
[CrossRef]

Barbastathis, G.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005).
[CrossRef]

Barrett, R. C.

M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62, 834-836 (1993).
[CrossRef]

Barrios, C. A.

C. A. Barrios, “Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator,” IEEE Photon. Technol. Lett. 18, 2419-2421 (2006).
[CrossRef]

Baselt, D. R.

D. R. Baselt, G. U. Lee, K. M. Hansen, L. A. Chrisey, and R. J. Colton, “A high-sensitivity micromachined biosensor,” Proc. IEEE 85, 672-680 (1997).
[CrossRef]

Battiston, F. M.

H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999).
[CrossRef]

Berger, R.

H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999).
[CrossRef]

Birner, A.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, R. Wehrspohn, U. Gösele, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal resonator,” Opt. Lett. 29, 174-176 (2004).
[CrossRef] [PubMed]

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Boag, A.

O. Levy, B. Z. Steinberg, N. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86, 104102 (2005).
[CrossRef]

Borghs, G.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Brand, O.

D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, and H. Baltes, “Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds,” Anal. Chem. 74, 3084-3095 (2002).
[CrossRef] [PubMed]

T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, C. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B 18, 2669-2675 (2000).
[CrossRef]

Brugger, J.

J. Brugger, R. A. Buser, and N. F. de Rooij, “Micromachined atomic force microprobe with integrated capacitive read-out,” J. Micromech. Microeng. 2, 218-220 (1992).
[CrossRef]

Bu, J. U.

Y.-S. Kim, H.-J. Nam, S.-M. Cho, J.-W. Hong, D.-C. Kim, and J. U. Bu, “PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM,” Sens. Actuators A 103, 122-129 (2003).
[CrossRef]

Buser, R. A.

J. Brugger, R. A. Buser, and N. F. de Rooij, “Micromachined atomic force microprobe with integrated capacitive read-out,” J. Micromech. Microeng. 2, 218-220 (1992).
[CrossRef]

Butt, H.-J.

R. Raiteri, M. Grattarola, H.-J. Butt, and Petr Skladal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115-126 (2001).
[CrossRef]

Cao, L.

Chao, Y.-T.

C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Chen, C.-C.

C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

C. Lee, R. Radhakrishnan, C.-C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, “Design and modeling of a nanomechanical sensor using silicon photonic crystals,” J. Lightwave Technol. 26, 839-846 (2008).
[CrossRef]

Chen, X. T.

C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Cho, S.-M.

Y.-S. Kim, H.-J. Nam, S.-M. Cho, J.-W. Hong, D.-C. Kim, and J. U. Bu, “PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM,” Sens. Actuators A 103, 122-129 (2003).
[CrossRef]

Cho, Y.-S.

Chrisey, L. A.

D. R. Baselt, G. U. Lee, K. M. Hansen, L. A. Chrisey, and R. J. Colton, “A high-sensitivity micromachined biosensor,” Proc. IEEE 85, 672-680 (1997).
[CrossRef]

Colton, R. J.

D. R. Baselt, G. U. Lee, K. M. Hansen, L. A. Chrisey, and R. J. Colton, “A high-sensitivity micromachined biosensor,” Proc. IEEE 85, 672-680 (1997).
[CrossRef]

Datskos, P. G.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75, 2229-2253 (2004).
[CrossRef]

de Rooij, N. F.

T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, C. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B 18, 2669-2675 (2000).
[CrossRef]

J. Brugger, R. A. Buser, and N. F. de Rooij, “Micromachined atomic force microprobe with integrated capacitive read-out,” J. Micromech. Microeng. 2, 218-220 (1992).
[CrossRef]

De Vlaminck, I.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Erickson, D.

Fan, S.

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Feng, H.

C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Fornaro, P.

H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999).
[CrossRef]

Fujita, H.

A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita, and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices,” IEICE Electron. Express 3, 39-43 (2006).
[CrossRef]

Gerber, Ch.

H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999).
[CrossRef]

Gimzewski, J. K.

H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999).
[CrossRef]

Gomyo, A.

A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita, and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices,” IEICE Electron. Express 3, 39-43 (2006).
[CrossRef]

Gösele, U.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, R. Wehrspohn, U. Gösele, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal resonator,” Opt. Lett. 29, 174-176 (2004).
[CrossRef] [PubMed]

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Graham, E. P. L.

C. E. Png, S. T. Lim, E. P. L. Graham, and T. Reed, “Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities,” IEEE Trans. Nanotechnol. 5, 478-484 (2006).
[CrossRef]

Grattarola, M.

R. Raiteri, M. Grattarola, H.-J. Butt, and Petr Skladal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115-126 (2001).
[CrossRef]

Gu, C.

Güntherodt, H. J.

H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999).
[CrossRef]

Hagleitner, C.

D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, and H. Baltes, “Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds,” Anal. Chem. 74, 3084-3095 (2002).
[CrossRef] [PubMed]

T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, C. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B 18, 2669-2675 (2000).
[CrossRef]

Hah, D.

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18, 358-360 (2006).
[CrossRef]

Hane, K.

K. Takahashi, Y. Kanamori, and K. Hane, in Proceedings of the IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2008), pp. 23-24.
[CrossRef]

Hansen, K. M.

D. R. Baselt, G. U. Lee, K. M. Hansen, L. A. Chrisey, and R. J. Colton, “A high-sensitivity micromachined biosensor,” Proc. IEEE 85, 672-680 (1997).
[CrossRef]

Haus, H. A.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005).
[CrossRef]

He, Q.

Hidber, H. R.

T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, C. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B 18, 2669-2675 (2000).
[CrossRef]

Hierlemann, A.

D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, and H. Baltes, “Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds,” Anal. Chem. 74, 3084-3095 (2002).
[CrossRef] [PubMed]

Higo, A.

A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita, and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices,” IEICE Electron. Express 3, 39-43 (2006).
[CrossRef]

Hong, J.-W.

Y.-S. Kim, H.-J. Nam, S.-M. Cho, J.-W. Hong, D.-C. Kim, and J. U. Bu, “PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM,” Sens. Actuators A 103, 122-129 (2003).
[CrossRef]

Hu, Z.

Z. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys. 90, 427-431 (2001).
[CrossRef]

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Ishida, S.

A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita, and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices,” IEICE Electron. Express 3, 39-43 (2006).
[CrossRef]

Itoh, T.

C. Lee, T. Itoh, and T. Suga, “Self-excited piezoelectric PZT microcantilevers for dynamic SFM with inherent sensing and actuating capabilities,” Sens. Actuators A 72, 179-188 (1999).
[CrossRef]

C. Lee, T. Itoh, R. Maeda, and T. Suga, “Characterization of micromachined piezoelectric PZT force sensors for dynamic scanning force microscopy,” Rev. Sci. Instrum. 68, 2091-2100 (1997).
[CrossRef]

T. Itoh and T. Suga, “Development of a force sensor for atomic force microscopy using piezoelectric thin films,” Nanotechnol. 4, 218-224 (1993).
[CrossRef]

Iwamoto, S.

A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita, and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices,” IEICE Electron. Express 3, 39-43 (2006).
[CrossRef]

Jin, G.

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Jun, S.

Kafesaki, M.

Kanamori, Y.

K. Takahashi, Y. Kanamori, and K. Hane, in Proceedings of the IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2008), pp. 23-24.
[CrossRef]

Kawano, K.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (Wiley, 2001).
[PubMed]

Kim, D.-C.

Y.-S. Kim, H.-J. Nam, S.-M. Cho, J.-W. Hong, D.-C. Kim, and J. U. Bu, “PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM,” Sens. Actuators A 103, 122-129 (2003).
[CrossRef]

Kim, J. P.

S. Shin, J. P. Kim, S. J. Sim, and J. Lee, “A multisized piezoelectric microcantilever biosensor array for the quantitative analysis of mass and surface stress,” Appl. Phys. Lett. 93, 102902 (2008).
[CrossRef]

Kim, Y.-S.

Y.-S. Kim, H.-J. Nam, S.-M. Cho, J.-W. Hong, D.-C. Kim, and J. U. Bu, “PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM,” Sens. Actuators A 103, 122-129 (2003).
[CrossRef]

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Kitoh, T.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (Wiley, 2001).
[PubMed]

Kramper, P.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, R. Wehrspohn, U. Gösele, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal resonator,” Opt. Lett. 29, 174-176 (2004).
[CrossRef] [PubMed]

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Lagae, L.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Lang, H. P.

H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999).
[CrossRef]

Lange, D.

D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, and H. Baltes, “Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds,” Anal. Chem. 74, 3084-3095 (2002).
[CrossRef] [PubMed]

T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, C. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B 18, 2669-2675 (2000).
[CrossRef]

Lau, E. K.

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18, 358-360 (2006).
[CrossRef]

Lavrik, N. V.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75, 2229-2253 (2004).
[CrossRef]

Lee, C.

C. Lee, R. Radhakrishnan, C.-C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, “Design and modeling of a nanomechanical sensor using silicon photonic crystals,” J. Lightwave Technol. 26, 839-846 (2008).
[CrossRef]

C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

C. Lee, T. Itoh, and T. Suga, “Self-excited piezoelectric PZT microcantilevers for dynamic SFM with inherent sensing and actuating capabilities,” Sens. Actuators A 72, 179-188 (1999).
[CrossRef]

C. Lee, T. Itoh, R. Maeda, and T. Suga, “Characterization of micromachined piezoelectric PZT force sensors for dynamic scanning force microscopy,” Rev. Sci. Instrum. 68, 2091-2100 (1997).
[CrossRef]

Lee, G. U.

D. R. Baselt, G. U. Lee, K. M. Hansen, L. A. Chrisey, and R. J. Colton, “A high-sensitivity micromachined biosensor,” Proc. IEEE 85, 672-680 (1997).
[CrossRef]

Lee, J.

S. Shin, J. P. Kim, S. J. Sim, and J. Lee, “A multisized piezoelectric microcantilever biosensor array for the quantitative analysis of mass and surface stress,” Appl. Phys. Lett. 93, 102902 (2008).
[CrossRef]

Lee, M.-C. M.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202-208 (2007).
[CrossRef]

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18, 358-360 (2006).
[CrossRef]

M.-C. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034-1036 (2005).
[CrossRef]

Leuenberger, D.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202-208 (2007).
[CrossRef]

Levy, O.

O. Levy, B. Z. Steinberg, N. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86, 104102 (2005).
[CrossRef]

Li, J.

Lim, S. T.

C. E. Png and S. T. Lim, “Silicon optical nanocavities for multiple sensing,” J. Lightwave Technol. 26, 1524-1531 (2008).
[CrossRef]

C. E. Png, S. T. Lim, E. P. L. Graham, and T. Reed, “Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities,” IEEE Trans. Nanotechnol. 5, 478-484 (2006).
[CrossRef]

Lo, G. Q.

C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Lopez-Royo, F.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005).
[CrossRef]

Maeda, R.

C. Lee, T. Itoh, R. Maeda, and T. Suga, “Characterization of micromachined piezoelectric PZT force sensors for dynamic scanning force microscopy,” Rev. Sci. Instrum. 68, 2091-2100 (1997).
[CrossRef]

Mandal, S.

Meyer, E.

H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999).
[CrossRef]

Meyer, G.

G. Meyer and N. M. Amer, “Novel optical approach to atomic force microscopy,” Appl. Phys. Lett. 53, 1045-1047 (1988).
[CrossRef]

Mlynek, J.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, R. Wehrspohn, U. Gösele, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal resonator,” Opt. Lett. 29, 174-176 (2004).
[CrossRef] [PubMed]

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Müller, F.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, R. Wehrspohn, U. Gösele, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal resonator,” Opt. Lett. 29, 174-176 (2004).
[CrossRef] [PubMed]

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Nam, H.-J.

Y.-S. Kim, H.-J. Nam, S.-M. Cho, J.-W. Hong, D.-C. Kim, and J. U. Bu, “PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM,” Sens. Actuators A 103, 122-129 (2003).
[CrossRef]

Nathan, N.

O. Levy, B. Z. Steinberg, N. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86, 104102 (2005).
[CrossRef]

Nielson, G. N.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005).
[CrossRef]

Png, C. E.

C. E. Png and S. T. Lim, “Silicon optical nanocavities for multiple sensing,” J. Lightwave Technol. 26, 1524-1531 (2008).
[CrossRef]

C. E. Png, S. T. Lim, E. P. L. Graham, and T. Reed, “Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities,” IEEE Trans. Nanotechnol. 5, 478-484 (2006).
[CrossRef]

Quate, C. F.

M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62, 834-836 (1993).
[CrossRef]

Radhakrishnan, R.

Raiteri, R.

R. Raiteri, M. Grattarola, H.-J. Butt, and Petr Skladal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115-126 (2001).
[CrossRef]

Rakich, P. T.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005).
[CrossRef]

Ramseyer, J. P.

H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999).
[CrossRef]

Reed, T.

C. E. Png, S. T. Lim, E. P. L. Graham, and T. Reed, “Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities,” IEEE Trans. Nanotechnol. 5, 478-484 (2006).
[CrossRef]

Roels, J.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Sandoghdar, V.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, R. Wehrspohn, U. Gösele, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal resonator,” Opt. Lett. 29, 174-176 (2004).
[CrossRef] [PubMed]

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Seneviratne, D.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005).
[CrossRef]

Sepaniak, M. J.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75, 2229-2253 (2004).
[CrossRef]

Shin, S.

S. Shin, J. P. Kim, S. J. Sim, and J. Lee, “A multisized piezoelectric microcantilever biosensor array for the quantitative analysis of mass and surface stress,” Appl. Phys. Lett. 93, 102902 (2008).
[CrossRef]

Sim, S. J.

S. Shin, J. P. Kim, S. J. Sim, and J. Lee, “A multisized piezoelectric microcantilever biosensor array for the quantitative analysis of mass and surface stress,” Appl. Phys. Lett. 93, 102902 (2008).
[CrossRef]

Skladal, Petr

R. Raiteri, M. Grattarola, H.-J. Butt, and Petr Skladal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115-126 (2001).
[CrossRef]

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Solgaard, O.

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

Soukoulis, C. M.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, R. Wehrspohn, U. Gösele, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal resonator,” Opt. Lett. 29, 174-176 (2004).
[CrossRef] [PubMed]

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Staufer, U.

T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, C. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B 18, 2669-2675 (2000).
[CrossRef]

Steinberg, B. Z.

O. Levy, B. Z. Steinberg, N. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86, 104102 (2005).
[CrossRef]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Suga, T.

C. Lee, T. Itoh, and T. Suga, “Self-excited piezoelectric PZT microcantilevers for dynamic SFM with inherent sensing and actuating capabilities,” Sens. Actuators A 72, 179-188 (1999).
[CrossRef]

C. Lee, T. Itoh, R. Maeda, and T. Suga, “Characterization of micromachined piezoelectric PZT force sensors for dynamic scanning force microscopy,” Rev. Sci. Instrum. 68, 2091-2100 (1997).
[CrossRef]

T. Itoh and T. Suga, “Development of a force sensor for atomic force microscopy using piezoelectric thin films,” Nanotechnol. 4, 218-224 (1993).
[CrossRef]

Suh, W.

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

Taillaert, D.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Takahashi, K.

K. Takahashi, Y. Kanamori, and K. Hane, in Proceedings of the IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2008), pp. 23-24.
[CrossRef]

Tao, S.

C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Thillaigovindan, J.

C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

C. Lee, R. Radhakrishnan, C.-C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, “Design and modeling of a nanomechanical sensor using silicon photonic crystals,” J. Lightwave Technol. 26, 839-846 (2008).
[CrossRef]

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Thundat, T.

Z. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys. 90, 427-431 (2001).
[CrossRef]

Tokushima, M.

A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita, and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices,” IEICE Electron. Express 3, 39-43 (2006).
[CrossRef]

Tonin, A.

T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, C. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B 18, 2669-2675 (2000).
[CrossRef]

Tortonese, M.

M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62, 834-836 (1993).
[CrossRef]

Toshiyoshi, H.

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18, 358-360 (2006).
[CrossRef]

A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita, and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices,” IEICE Electron. Express 3, 39-43 (2006).
[CrossRef]

Tuller, H. L.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005).
[CrossRef]

Van Thourhout, D.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Warmack, R. J.

Z. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys. 90, 427-431 (2001).
[CrossRef]

Watts, M. R.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005).
[CrossRef]

Wehrspohn, R.

Wu, M.

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18, 358-360 (2006).
[CrossRef]

Wu, M. C.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202-208 (2007).
[CrossRef]

M.-C. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034-1036 (2005).
[CrossRef]

Xiang, W.

C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Xu, Z.

Yamada, H.

A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita, and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices,” IEICE Electron. Express 3, 39-43 (2006).
[CrossRef]

Yanik, M. F.

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

Yao, J.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202-208 (2007).
[CrossRef]

Yu, A.

C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Ziegler, C.

C. Ziegler, “Cantilever-based biosensors,” Anal. Bioanal. Chem. 379, 946-959 (2004).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

C. Ziegler, “Cantilever-based biosensors,” Anal. Bioanal. Chem. 379, 946-959 (2004).
[CrossRef] [PubMed]

Anal. Chem. (1)

D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, and H. Baltes, “Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds,” Anal. Chem. 74, 3084-3095 (2002).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999).
[CrossRef]

Appl. Phys. Lett. (7)

S. Shin, J. P. Kim, S. J. Sim, and J. Lee, “A multisized piezoelectric microcantilever biosensor array for the quantitative analysis of mass and surface stress,” Appl. Phys. Lett. 93, 102902 (2008).
[CrossRef]

G. Meyer and N. M. Amer, “Novel optical approach to atomic force microscopy,” Appl. Phys. Lett. 53, 1045-1047 (1988).
[CrossRef]

M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62, 834-836 (1993).
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

O. Levy, B. Z. Steinberg, N. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86, 104102 (2005).
[CrossRef]

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202-208 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18, 358-360 (2006).
[CrossRef]

M.-C. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034-1036 (2005).
[CrossRef]

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005).
[CrossRef]

C. A. Barrios, “Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator,” IEEE Photon. Technol. Lett. 18, 2419-2421 (2006).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

C. E. Png, S. T. Lim, E. P. L. Graham, and T. Reed, “Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities,” IEEE Trans. Nanotechnol. 5, 478-484 (2006).
[CrossRef]

IEICE Electron. Express (1)

A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita, and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices,” IEICE Electron. Express 3, 39-43 (2006).
[CrossRef]

J. Appl. Phys. (2)

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

Z. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys. 90, 427-431 (2001).
[CrossRef]

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

J. Brugger, R. A. Buser, and N. F. de Rooij, “Micromachined atomic force microprobe with integrated capacitive read-out,” J. Micromech. Microeng. 2, 218-220 (1992).
[CrossRef]

J. Vac. Sci. Technol. B (1)

T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, C. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B 18, 2669-2675 (2000).
[CrossRef]

Nanotechnol. (1)

T. Itoh and T. Suga, “Development of a force sensor for atomic force microscopy using piezoelectric thin films,” Nanotechnol. 4, 218-224 (1993).
[CrossRef]

Nature (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Proc. IEEE (1)

D. R. Baselt, G. U. Lee, K. M. Hansen, L. A. Chrisey, and R. J. Colton, “A high-sensitivity micromachined biosensor,” Proc. IEEE 85, 672-680 (1997).
[CrossRef]

Rev. Sci. Instrum. (2)

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75, 2229-2253 (2004).
[CrossRef]

C. Lee, T. Itoh, R. Maeda, and T. Suga, “Characterization of micromachined piezoelectric PZT force sensors for dynamic scanning force microscopy,” Rev. Sci. Instrum. 68, 2091-2100 (1997).
[CrossRef]

Sens. Actuators A (2)

C. Lee, T. Itoh, and T. Suga, “Self-excited piezoelectric PZT microcantilevers for dynamic SFM with inherent sensing and actuating capabilities,” Sens. Actuators A 72, 179-188 (1999).
[CrossRef]

Y.-S. Kim, H.-J. Nam, S.-M. Cho, J.-W. Hong, D.-C. Kim, and J. U. Bu, “PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM,” Sens. Actuators A 103, 122-129 (2003).
[CrossRef]

Sens. Actuators B (1)

R. Raiteri, M. Grattarola, H.-J. Butt, and Petr Skladal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115-126 (2001).
[CrossRef]

Other (3)

K. Takahashi, Y. Kanamori, and K. Hane, in Proceedings of the IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2008), pp. 23-24.
[CrossRef]

http://www.coventor.com/coventorware/

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (Wiley, 2001).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Top view drawing of PC cantilever with a nanocavity resonator, (b) tilted top view drawing of PC cantilever where force is applied at the end of the cantilever, and (c) schematic drawing of nanocavity PC waveguide resonator on a U-shaped Si waveguide, where the circled areas represent airholes.

Fig. 2
Fig. 2

(a) Deformation contour plot of a 30 μm long and 15 μm wide cantilever under 0.6 μN force load and (b), (c) data of vertical displacement at cantilever end under various force loads.

Fig. 3
Fig. 3

Resonant wavelength peaks of cantilevers under various force loads.

Fig. 4
Fig. 4

(a) Resonant wavelength for cantilevers versus different force loads. (b) Resonant wavelength for cantilevers versus different vertical displacements at cantilever end.

Fig. 5
Fig. 5

(a) Resonant wavelength shift for cantilevers versus different force loads. (b) Resonant wavelength shift for cantilevers versus different vertical displacements at cantilever end.

Fig. 6
Fig. 6

Derived strain versus the resonant wavelength shift for cantilevers.

Metrics