Abstract

We present a measurement uncertainty evaluation for emission color and luminance of displays. The calibration procedures and the measurement uncertainties of a CCD-based spectroradiometer and a filter-type luminance meter are discussed. As evaluation examples, a Commission Internationale de l’ Éclairage illuminant A, a liquid-crystal display with a light-emitting diode backlight, and a liquid-crystal display with a cold-cathode fluorescent lamp backlight are evaluated. The uncertainties in Commission Internationale de l’ Éclairage 1931 (x,y) chromaticity coordinates are determined to be in a range from 0.0020 to 0.0050 (k=2). The uncertainties in luminance are obtained from 4.8% to 8.5% by using the spectroradiometer, while the filter-type luminance meter shows the uncertainties from 1.1% to 1.6% (k=2).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Kim, “Technolgy overview: LCDs for TV application,” J. Soc. Inf. Disp. 12, 449-453 (2004).
    [CrossRef]
  2. International standard, “Multimedia systems and equipment--Color measurement and management Part 3: Equipment using cathode ray tubes,” CEI/IEC 61966-3 (International Electrotechnical Commission, 2000).
  3. International standard, “Multimedia systems and equipment--Color measurement and management Part 4: Equipment using liquid crystal display panels,” CEI/IEC 61966-4 (International Electrotechnical Commission, 2000).
  4. ISO, Guide to the Expression of Uncertainty in Measurement, (International Organization for Standardization, 1993).
  5. Video Electronics Standards Association (VESA) Display Metrology Committee, “Flat Panel Display Measurements Standard,” Version 2.0 (Video Electronics Standards Association, 2001).
  6. F. Manoocheri, S. W. Brown, and Y. Ohno, “NIST colorimetric calibration facility for displays, part 2,” SID Symposium Digest of Technical Papers (Society for Information Display, 2001), Vol. 32, pp. 330-333
  7. S. Park, D.-H. Lee, Y.-W. Kim, and S.-N. Park, “Uncertainty evaluation for the spectroradiometric measurement of the average light-emitting diode intensity,” Appl. Opt. 46, 2851-2858 (2007).
    [CrossRef] [PubMed]
  8. Colorimetry: Understanding the CIE System, J. Schanda, ed. (Wiley, 2007).
  9. M. Melgosa, E. Hita, A. J. Poza, D. H. Alman, and R. S. Berns, “Suprathreshold color-difference ellipsoids for surface colors,” Color Res. Appl. 22, 148-155 (1997).
    [CrossRef]
  10. Y. Ohno, “Photometry,” in Optical Radiometry, Experimental Methods in the Physical Sciences, A. C. Parr, R. U. Datla, and J. L. Gardner, eds. (Elsevier Academic, 2005), Vol. 41, pp 327-366.
    [CrossRef]
  11. P. Toivanen, J. Hovila, P. Kärhä, and E. Ikonen, “Realizations of the units of luminance and spectral radiance at the HUT,” Metrologia 37, 527-530 (2000).
    [CrossRef]
  12. Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111-1119 (2006).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

2004 (1)

W. Kim, “Technolgy overview: LCDs for TV application,” J. Soc. Inf. Disp. 12, 449-453 (2004).
[CrossRef]

2000 (1)

P. Toivanen, J. Hovila, P. Kärhä, and E. Ikonen, “Realizations of the units of luminance and spectral radiance at the HUT,” Metrologia 37, 527-530 (2000).
[CrossRef]

1997 (1)

M. Melgosa, E. Hita, A. J. Poza, D. H. Alman, and R. S. Berns, “Suprathreshold color-difference ellipsoids for surface colors,” Color Res. Appl. 22, 148-155 (1997).
[CrossRef]

Alman, D. H.

M. Melgosa, E. Hita, A. J. Poza, D. H. Alman, and R. S. Berns, “Suprathreshold color-difference ellipsoids for surface colors,” Color Res. Appl. 22, 148-155 (1997).
[CrossRef]

Berns, R. S.

M. Melgosa, E. Hita, A. J. Poza, D. H. Alman, and R. S. Berns, “Suprathreshold color-difference ellipsoids for surface colors,” Color Res. Appl. 22, 148-155 (1997).
[CrossRef]

Brown, S. W.

Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111-1119 (2006).
[CrossRef] [PubMed]

F. Manoocheri, S. W. Brown, and Y. Ohno, “NIST colorimetric calibration facility for displays, part 2,” SID Symposium Digest of Technical Papers (Society for Information Display, 2001), Vol. 32, pp. 330-333

Hita, E.

M. Melgosa, E. Hita, A. J. Poza, D. H. Alman, and R. S. Berns, “Suprathreshold color-difference ellipsoids for surface colors,” Color Res. Appl. 22, 148-155 (1997).
[CrossRef]

Hovila, J.

P. Toivanen, J. Hovila, P. Kärhä, and E. Ikonen, “Realizations of the units of luminance and spectral radiance at the HUT,” Metrologia 37, 527-530 (2000).
[CrossRef]

Ikonen, E.

P. Toivanen, J. Hovila, P. Kärhä, and E. Ikonen, “Realizations of the units of luminance and spectral radiance at the HUT,” Metrologia 37, 527-530 (2000).
[CrossRef]

Johnson, B. C.

Kärhä, P.

P. Toivanen, J. Hovila, P. Kärhä, and E. Ikonen, “Realizations of the units of luminance and spectral radiance at the HUT,” Metrologia 37, 527-530 (2000).
[CrossRef]

Kim, W.

W. Kim, “Technolgy overview: LCDs for TV application,” J. Soc. Inf. Disp. 12, 449-453 (2004).
[CrossRef]

Kim, Y.-W.

Lee, D.-H.

Lykke, K. R.

Manoocheri, F.

F. Manoocheri, S. W. Brown, and Y. Ohno, “NIST colorimetric calibration facility for displays, part 2,” SID Symposium Digest of Technical Papers (Society for Information Display, 2001), Vol. 32, pp. 330-333

Melgosa, M.

M. Melgosa, E. Hita, A. J. Poza, D. H. Alman, and R. S. Berns, “Suprathreshold color-difference ellipsoids for surface colors,” Color Res. Appl. 22, 148-155 (1997).
[CrossRef]

Ohno, Y.

Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111-1119 (2006).
[CrossRef] [PubMed]

Y. Ohno, “Photometry,” in Optical Radiometry, Experimental Methods in the Physical Sciences, A. C. Parr, R. U. Datla, and J. L. Gardner, eds. (Elsevier Academic, 2005), Vol. 41, pp 327-366.
[CrossRef]

F. Manoocheri, S. W. Brown, and Y. Ohno, “NIST colorimetric calibration facility for displays, part 2,” SID Symposium Digest of Technical Papers (Society for Information Display, 2001), Vol. 32, pp. 330-333

Park, S.

Park, S.-N.

Poza, A. J.

M. Melgosa, E. Hita, A. J. Poza, D. H. Alman, and R. S. Berns, “Suprathreshold color-difference ellipsoids for surface colors,” Color Res. Appl. 22, 148-155 (1997).
[CrossRef]

Toivanen, P.

P. Toivanen, J. Hovila, P. Kärhä, and E. Ikonen, “Realizations of the units of luminance and spectral radiance at the HUT,” Metrologia 37, 527-530 (2000).
[CrossRef]

Zong, Y.

Appl. Opt. (2)

Color Res. Appl. (1)

M. Melgosa, E. Hita, A. J. Poza, D. H. Alman, and R. S. Berns, “Suprathreshold color-difference ellipsoids for surface colors,” Color Res. Appl. 22, 148-155 (1997).
[CrossRef]

J. Soc. Inf. Disp. (1)

W. Kim, “Technolgy overview: LCDs for TV application,” J. Soc. Inf. Disp. 12, 449-453 (2004).
[CrossRef]

Metrologia (1)

P. Toivanen, J. Hovila, P. Kärhä, and E. Ikonen, “Realizations of the units of luminance and spectral radiance at the HUT,” Metrologia 37, 527-530 (2000).
[CrossRef]

Other (7)

International standard, “Multimedia systems and equipment--Color measurement and management Part 3: Equipment using cathode ray tubes,” CEI/IEC 61966-3 (International Electrotechnical Commission, 2000).

International standard, “Multimedia systems and equipment--Color measurement and management Part 4: Equipment using liquid crystal display panels,” CEI/IEC 61966-4 (International Electrotechnical Commission, 2000).

ISO, Guide to the Expression of Uncertainty in Measurement, (International Organization for Standardization, 1993).

Video Electronics Standards Association (VESA) Display Metrology Committee, “Flat Panel Display Measurements Standard,” Version 2.0 (Video Electronics Standards Association, 2001).

F. Manoocheri, S. W. Brown, and Y. Ohno, “NIST colorimetric calibration facility for displays, part 2,” SID Symposium Digest of Technical Papers (Society for Information Display, 2001), Vol. 32, pp. 330-333

Colorimetry: Understanding the CIE System, J. Schanda, ed. (Wiley, 2007).

Y. Ohno, “Photometry,” in Optical Radiometry, Experimental Methods in the Physical Sciences, A. C. Parr, R. U. Datla, and J. L. Gardner, eds. (Elsevier Academic, 2005), Vol. 41, pp 327-366.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

(a) Spectral power distribution of R, G, and B primaries of an LCD monitor with an LED backlight and (b) that of an LCD monitor with a CCFL backlight.

Tables (3)

Tables Icon

Table 1 Uncertainty Budget for the Measurement of ( x , y ) Chromaticity Coordinates Obtained by Using a CCD-Based Spectroradiometer a

Tables Icon

Table 2 Uncertainty Budget for the Luminance Responsivity of a Filter-Type Luminance Meter u r c ( S L F ) and That of a CCD-Based Spectroradiometer u r c ( S L S )

Tables Icon

Table 3 Uncertainty Budget for the Luminance Measurement Using a Filter-type Luminance Meter u r c ( L v F ) and Uncertainty Budget for the Luminance Measurement with a CCD-Based Spectroradiometer u r c ( L v S ) a

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

x = i S i x ¯ i Δ i S i x ¯ i Δ + i S i y ¯ i Δ + i S i z ¯ i Δ X 1 X 1 + X 2 + X 3 ,
y = i S i y ¯ i Δ i S i x ¯ i Δ + i S i y ¯ i Δ + i S i z ¯ i Δ X 2 X 1 + X 2 + X 3 ,
u 2 ( x ) = i , j x X i x X j u ( X i , X j ) ,
u 2 ( y ) = i , j y X i y X j u ( X i , X j ) .
u 2 ( x ) = [ Σ X 1 Σ 2 X 2 Σ 2 X 3 Σ 2 ] [ u ( X i , X j ) ] [ Σ X 1 Σ 2 X 2 Σ 2 X 3 Σ 2 ] T ,
u 2 ( y ) = [ X 1 Σ 2 Σ X 2 Σ 2 X 3 Σ 2 ] [ u ( X i , X j ) ] [ X 1 Σ 2 Σ X 2 Σ 2 X 3 Σ 2 ] T .
u ( X 1 , X 1 ) = i , j X 1 S i X 1 S j u ( S i , S j ) = [ x ¯ i Δ ] [ u ( S i , S j ) ] [ x ¯ j Δ ] T ,
u ( X 1 , X 2 ) = i , j X 1 S i X 2 S j u ( S i , S j ) = [ x ¯ i Δ ] [ u ( S i , S j ) ] [ y ¯ j Δ ] T = u ( X 2 , X 1 ) ,
u ( X 1 , X 3 ) = i , j X 1 S i X 3 S j u ( S i , S j ) = [ x ¯ i Δ ] [ u ( S i , S j ) ] [ z ¯ j Δ ] T = u ( X 3 , X 1 ) ,
u ( X 2 , X 2 ) = i , j X 2 S i X 2 S j u ( S i , S j ) = [ y ¯ i Δ ] [ u ( S i , S j ) ] [ y ¯ j Δ ] T ,
u ( X 2 , X 3 ) = i , j X 2 S i X 3 S j u ( S i , S j ) = [ y ¯ i Δ ] [ u ( S i , S j ) ] [ z ¯ j Δ ] T = u ( X 3 , X 2 ) ,
u ( X 3 , X 3 ) = i , j X 3 S i X 3 S j u ( S i , S j ) = [ z ¯ i Δ ] [ u ( S i , S j ) ] [ z ¯ j Δ ] T .
S L F = y F L v = y F y I S S L I S k C .
k C = S I S ( λ ) V ( λ ) d λ · S A ( λ ) R ( λ ) d λ S I S ( λ ) R ( λ ) d λ · S A ( λ ) V ( λ ) d λ .
k C = S i I S V i Δ i · S i A R i Δ i S i I S R i Δ i · S i A V i Δ i .
u r 2 ( k C ) = i , j ln k C ln A i ln k C ln A j u r ( A i , A j ) .
u r 2 ( k C ) = i , j [ ln k C ln A i ] [ u r ( A i , A j ) ] [ ln k C ln A j ] T ,
u r ( A 1 , A 1 ) = [ V i Δ i ] [ u ( S i I S , S j I S ) ] [ V j Δ j ] T , u r ( A 1 , A 3 ) = [ V i Δ i ] [ u ( S i I S , S j I S ) ] [ R j Δ j ] T , u r ( A 2 , A 2 ) = [ R i Δ i ] [ u ( S i A , S j A ) ] [ R j Δ j ] T + [ S i A Δ i ] [ u ( R i , R j ) ] [ S j A Δ j ] T , u r ( A 2 , A 3 ) = [ S i A Δ i ] [ u ( R i , R j ) ] [ S j I S Δ j ] T , u r ( A 2 , A 4 ) = [ R i Δ i ] [ u ( S i A , S j A ) ] [ V j Δ j ] T , u r ( A 3 , A 3 ) = [ R i Δ i ] [ u ( S i I S , S j I S ) ] [ R j Δ j ] T + [ S i I S Δ i ] [ u ( R i , R j ) ] [ S j I S Δ j ] T , u r ( A 4 , A 4 ) = [ V i Δ i ] [ u ( S i A , S j A ) ] [ V j Δ j ] T , u r ( A 1 , A 2 ) = u r ( A 1 , A 4 ) = u r ( A 3 , A 4 ) = 0.
u r 2 ( S L F ) = u r 2 ( y F ) + u r 2 ( k C ) + u r 2 ( y I S ) + u r 2 ( S L I S ) .
L v F = y T S L F k C T ,
u r 2 ( L v F ) = u r 2 ( y T ) + u r 2 ( k C T ) + u r 2 ( S L F ) .
S L S = y S L v = y S y I S S L I S ,
y S = K m y e , λ V ( λ ) d λ .
y S = K m i y e , i V i Δ i .
u r 2 ( y S ) = 1 ( y S ) 2 i , j y S y e , i y S y e , j u ( y e , i , y e , j ) = 1 Γ 2 i , j ( V i Δ i ) ( V j Δ j ) u ( y e , i , y e , j ) .
u r 2 ( S L S ) = u r 2 ( y S ) + u r 2 ( y I S ) + u r 2 ( S L I S ) .
L v S = y T S L S .
u r 2 ( L v S ) = u r 2 ( y T ) + u r 2 ( S L S ) .

Metrics