Abstract

Growth of the autocloned Ta2O5/SiO2 multilayer photonic crystal with a lateral sawtooth period was simulated. Ion-beam sputter (IBS) was applied to deposit the films and radio-frequency-bias (RF-bias) etching was applied simultaneously with the IBS on the Ta2O5 film. Both simulation and experiment showed that the quality of the autocloning can be controlled by the RF-bias power; there is an intermediate power range within which the drop of peak-to-valley height variation of the sawtooth profile can be reduced significantly such that a high degree of autocloning can be achieved. Analysis showed that simultaneous deposition and etching at the proper RF-bias power on the Ta2O5 film has the capability to compensate the flattening effect of the SiO2 deposition such that the sawtooth surface profile can be maintained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawakami, “Fabrication of submicrometer 3D period structures composed of Si/SiO2,” Electron. Lett. 33, 1260-1261(1997).
    [CrossRef]
  2. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271 (1999).
    [CrossRef]
  3. S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys Lett. 74, 463-465(1999).
    [CrossRef]
  4. T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys Lett. 77, 2613-2615(2000).
    [CrossRef]
  5. C. Y. Ting, V. J. Vivalda, and H. G. Schaefer, “Study of planarized sputter-deposited SiO2,” J. Vac. Sci. Technol. 15, 1105-1112 (1978).
    [CrossRef]
  6. H. Bach, “Application of ion sputtering in preparing glasses and their surface layers for electron microscope investigations,” J. Non-Cryst. Solids 3, 1-32 (1970).
    [CrossRef]
  7. S. Matsuo, “An analytical treatment on the pattern formation process by sputter etching with a mask,” Jpn. J. Appl. Phys. 15, 1253-1562 (1976).
    [CrossRef]
  8. A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, “rf-plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications,” J. Appl. Phys. 54, 4590-4595 (1983).
    [CrossRef]
  9. Y. Catherine and P. Couderc, “Electrical characteristics and growth kinetics in discharges used for plasma deposition of amorphouse carbon,” Thin Solid Films 144, 265-280 (1986).
    [CrossRef]

2000 (1)

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys Lett. 77, 2613-2615(2000).
[CrossRef]

1999 (2)

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271 (1999).
[CrossRef]

S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys Lett. 74, 463-465(1999).
[CrossRef]

1997 (1)

S. Kawakami, “Fabrication of submicrometer 3D period structures composed of Si/SiO2,” Electron. Lett. 33, 1260-1261(1997).
[CrossRef]

1986 (1)

Y. Catherine and P. Couderc, “Electrical characteristics and growth kinetics in discharges used for plasma deposition of amorphouse carbon,” Thin Solid Films 144, 265-280 (1986).
[CrossRef]

1983 (1)

A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, “rf-plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications,” J. Appl. Phys. 54, 4590-4595 (1983).
[CrossRef]

1978 (1)

C. Y. Ting, V. J. Vivalda, and H. G. Schaefer, “Study of planarized sputter-deposited SiO2,” J. Vac. Sci. Technol. 15, 1105-1112 (1978).
[CrossRef]

1976 (1)

S. Matsuo, “An analytical treatment on the pattern formation process by sputter etching with a mask,” Jpn. J. Appl. Phys. 15, 1253-1562 (1976).
[CrossRef]

1970 (1)

H. Bach, “Application of ion sputtering in preparing glasses and their surface layers for electron microscope investigations,” J. Non-Cryst. Solids 3, 1-32 (1970).
[CrossRef]

Bach, H.

H. Bach, “Application of ion sputtering in preparing glasses and their surface layers for electron microscope investigations,” J. Non-Cryst. Solids 3, 1-32 (1970).
[CrossRef]

Brandt, G.

A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, “rf-plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications,” J. Appl. Phys. 54, 4590-4595 (1983).
[CrossRef]

Bubenzer, A.

A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, “rf-plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications,” J. Appl. Phys. 54, 4590-4595 (1983).
[CrossRef]

Catherine, Y.

Y. Catherine and P. Couderc, “Electrical characteristics and growth kinetics in discharges used for plasma deposition of amorphouse carbon,” Thin Solid Films 144, 265-280 (1986).
[CrossRef]

Couderc, P.

Y. Catherine and P. Couderc, “Electrical characteristics and growth kinetics in discharges used for plasma deposition of amorphouse carbon,” Thin Solid Films 144, 265-280 (1986).
[CrossRef]

Dischler, B.

A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, “rf-plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications,” J. Appl. Phys. 54, 4590-4595 (1983).
[CrossRef]

Kawakami, S.

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys Lett. 77, 2613-2615(2000).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271 (1999).
[CrossRef]

S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys Lett. 74, 463-465(1999).
[CrossRef]

S. Kawakami, “Fabrication of submicrometer 3D period structures composed of Si/SiO2,” Electron. Lett. 33, 1260-1261(1997).
[CrossRef]

Kawashima, T.

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys Lett. 77, 2613-2615(2000).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271 (1999).
[CrossRef]

S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys Lett. 74, 463-465(1999).
[CrossRef]

Koidl, P.

A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, “rf-plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications,” J. Appl. Phys. 54, 4590-4595 (1983).
[CrossRef]

Matsuo, S.

S. Matsuo, “An analytical treatment on the pattern formation process by sputter etching with a mask,” Jpn. J. Appl. Phys. 15, 1253-1562 (1976).
[CrossRef]

Miura, K.

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys Lett. 77, 2613-2615(2000).
[CrossRef]

Ohtera, Y.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271 (1999).
[CrossRef]

Sato, T.

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys Lett. 77, 2613-2615(2000).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271 (1999).
[CrossRef]

S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys Lett. 74, 463-465(1999).
[CrossRef]

Schaefer, H. G.

C. Y. Ting, V. J. Vivalda, and H. G. Schaefer, “Study of planarized sputter-deposited SiO2,” J. Vac. Sci. Technol. 15, 1105-1112 (1978).
[CrossRef]

Tamamura, T.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271 (1999).
[CrossRef]

Ting, C. Y.

C. Y. Ting, V. J. Vivalda, and H. G. Schaefer, “Study of planarized sputter-deposited SiO2,” J. Vac. Sci. Technol. 15, 1105-1112 (1978).
[CrossRef]

Vivalda, V. J.

C. Y. Ting, V. J. Vivalda, and H. G. Schaefer, “Study of planarized sputter-deposited SiO2,” J. Vac. Sci. Technol. 15, 1105-1112 (1978).
[CrossRef]

Appl. Phys Lett. (2)

S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys Lett. 74, 463-465(1999).
[CrossRef]

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys Lett. 77, 2613-2615(2000).
[CrossRef]

Electron. Lett. (2)

S. Kawakami, “Fabrication of submicrometer 3D period structures composed of Si/SiO2,” Electron. Lett. 33, 1260-1261(1997).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271 (1999).
[CrossRef]

J. Appl. Phys. (1)

A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, “rf-plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications,” J. Appl. Phys. 54, 4590-4595 (1983).
[CrossRef]

J. Non-Cryst. Solids (1)

H. Bach, “Application of ion sputtering in preparing glasses and their surface layers for electron microscope investigations,” J. Non-Cryst. Solids 3, 1-32 (1970).
[CrossRef]

J. Vac. Sci. Technol. (1)

C. Y. Ting, V. J. Vivalda, and H. G. Schaefer, “Study of planarized sputter-deposited SiO2,” J. Vac. Sci. Technol. 15, 1105-1112 (1978).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Matsuo, “An analytical treatment on the pattern formation process by sputter etching with a mask,” Jpn. J. Appl. Phys. 15, 1253-1562 (1976).
[CrossRef]

Thin Solid Films (1)

Y. Catherine and P. Couderc, “Electrical characteristics and growth kinetics in discharges used for plasma deposition of amorphouse carbon,” Thin Solid Films 144, 265-280 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Deposition and etching rate versus inclination angle θ. Etching rates for four different RF-bias power levels are shown.

Fig. 2
Fig. 2

(a) Simulation of the autocloned multilayer stacks’ formation on a sawtooth substrate. Dark layers are Si O 2 . (b) Simulated Δ H versus number of layers with various RF-bias etching power levels from low level 1 to high level 14. Inset is a schematic of the definition of two characteristic parameters, slope and intercept, of the curves. (c) Simulated slope and intercept versus RF-bias etching power.

Fig. 3
Fig. 3

Schematic of the ion-beam-sputtering and RF-bias-etching apparatus.

Fig. 4
Fig. 4

DC self-bias voltage of the RF plasma versus the RF power.

Fig. 5
Fig. 5

(a) Scanning electron microscope cross-sectional view of the samples with various RF-bias powers from 0 to 90 W . Dark layers are Si O 2 . (b) Experimental Δ H versus number of layers with various RF-bias powers from 0 to 90 W . (c) Experimental slope and intercept versus RF-bias power.

Fig. 6
Fig. 6

Δ H versus number of layers for a sample with a total of 61 layers. The inset is the scanning electron microscope cross-sectional view of the sample. The sample was prepared with 30 W RF-bias power.

Tables (1)

Tables Icon

Table 1 Process Parameters for Ion-Beam Sputtering and RF-Bias Etching

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Y ( θ ) = { f + [ g + h sin 2 ( θ ) ] sec ( θ ) , 0 ° θ θ c p q ( θ θ max ) 2 , θ c θ 90 ° ,

Metrics