Abstract

We propose a new optical architecture for the laser optical feedback imaging (LOFI) technique which makes it possible to avoid the adverse effect of the optical parasitic backscattering introduced by all the optical interfaces located between the laser source and the studied object. This proposed setup needs no specific or complex alignment, which is why we can consider the proposed setup to be self-aligned. We describe the principle used to avoid the parasitic backscattering contributions that dramatically deteriorate amplitude and phase information contained in the LOFI images. Finally, we give a successful demonstration of amplitude and phase images obtained with this self-aligned setup in the presence of a parasitic reflection.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744-746 (1999).
    [CrossRef]
  2. E. Lacot and O. Hugon, “Phase sensitive laser detection by frequency-shifted optical feedback,” Phys. Rev. A 70, 053824(2004).
    [CrossRef]
  3. E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001).
    [CrossRef]
  4. M. E. Storm, “Controlled retroreflection: a technique for understanding and eliminating parasitic lasing,” J. Opt. Soc. Am. B 9, 1299-1304 (1992).
    [CrossRef]
  5. P. Megret, L. Wuilmart, J. C. Froidure, and M. Blondel, “Bit-error-rate in optical fiber links with optical reflections,” in Proceedings of IEEE Conference on Lasers-and-Electro-Optics-Society (IEEE, 1997), Vol. 2, pp. 87-89.
  6. R. Day, “Une nouvelle technique d'imagerie laser basée sur la reinjection décalée en fréquence, laser optical feedback imaging,” Ph.D. thesis (University J. Fourier, 2000), pp. 51-55, http://www-lsp.ujf-grenoble.fr/pdf/theses/dyrd.pdf.
  7. O. Jacquin, E. Lacot, C. Felix, and O. Hugon, “Laser optical feedback imaging insensitive to parasitic optical feedback,” Appl. Opt. 46, 6779-6782 (2007).
    [CrossRef] [PubMed]
  8. C. H. RussellM. I. Younus, and J. Blackshire, “Robust phase-unwrapping algorithm with a spatial binary-tree image decomposition,” Appl. Opt. 37, 4468-4476 (1998).
    [CrossRef]
  9. J. M. Mackowski, “Coatings principles,” in Optics in Astrophysics: Proceedings of the NATO Advanced Study Institute on Optics in Astrophysics, R. Foy and F. -C. Foy, eds. (Springer, 2005), Vol. 198, pp. 327-342.
  10. O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
    [CrossRef]

2008 (1)

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

2007 (1)

2004 (1)

E. Lacot and O. Hugon, “Phase sensitive laser detection by frequency-shifted optical feedback,” Phys. Rev. A 70, 053824(2004).
[CrossRef]

2001 (1)

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001).
[CrossRef]

1999 (1)

1998 (1)

1992 (1)

Blackshire, J.

Blondel, M.

P. Megret, L. Wuilmart, J. C. Froidure, and M. Blondel, “Bit-error-rate in optical fiber links with optical reflections,” in Proceedings of IEEE Conference on Lasers-and-Electro-Optics-Society (IEEE, 1997), Vol. 2, pp. 87-89.

Day, R.

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744-746 (1999).
[CrossRef]

R. Day, “Une nouvelle technique d'imagerie laser basée sur la reinjection décalée en fréquence, laser optical feedback imaging,” Ph.D. thesis (University J. Fourier, 2000), pp. 51-55, http://www-lsp.ujf-grenoble.fr/pdf/theses/dyrd.pdf.

Felix, C.

Froidure, J. C.

P. Megret, L. Wuilmart, J. C. Froidure, and M. Blondel, “Bit-error-rate in optical fiber links with optical reflections,” in Proceedings of IEEE Conference on Lasers-and-Electro-Optics-Society (IEEE, 1997), Vol. 2, pp. 87-89.

Hugon, O.

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

O. Jacquin, E. Lacot, C. Felix, and O. Hugon, “Laser optical feedback imaging insensitive to parasitic optical feedback,” Appl. Opt. 46, 6779-6782 (2007).
[CrossRef] [PubMed]

E. Lacot and O. Hugon, “Phase sensitive laser detection by frequency-shifted optical feedback,” Phys. Rev. A 70, 053824(2004).
[CrossRef]

Jacquin, O.

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

O. Jacquin, E. Lacot, C. Felix, and O. Hugon, “Laser optical feedback imaging insensitive to parasitic optical feedback,” Appl. Opt. 46, 6779-6782 (2007).
[CrossRef] [PubMed]

Lacot, E.

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

O. Jacquin, E. Lacot, C. Felix, and O. Hugon, “Laser optical feedback imaging insensitive to parasitic optical feedback,” Appl. Opt. 46, 6779-6782 (2007).
[CrossRef] [PubMed]

E. Lacot and O. Hugon, “Phase sensitive laser detection by frequency-shifted optical feedback,” Phys. Rev. A 70, 053824(2004).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744-746 (1999).
[CrossRef]

Mackowski, J. M.

J. M. Mackowski, “Coatings principles,” in Optics in Astrophysics: Proceedings of the NATO Advanced Study Institute on Optics in Astrophysics, R. Foy and F. -C. Foy, eds. (Springer, 2005), Vol. 198, pp. 327-342.

Megret, P.

P. Megret, L. Wuilmart, J. C. Froidure, and M. Blondel, “Bit-error-rate in optical fiber links with optical reflections,” in Proceedings of IEEE Conference on Lasers-and-Electro-Optics-Society (IEEE, 1997), Vol. 2, pp. 87-89.

Paun, I. A.

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

Ricard, C.

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

Russell, C. H.

Stoeckel, F.

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744-746 (1999).
[CrossRef]

Storm, M. E.

van der Sanden, B.

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

Witomski, A.

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

Wuilmart, L.

P. Megret, L. Wuilmart, J. C. Froidure, and M. Blondel, “Bit-error-rate in optical fiber links with optical reflections,” in Proceedings of IEEE Conference on Lasers-and-Electro-Optics-Society (IEEE, 1997), Vol. 2, pp. 87-89.

Younus, M. I.

Appl. Opt. (2)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. A (2)

E. Lacot and O. Hugon, “Phase sensitive laser detection by frequency-shifted optical feedback,” Phys. Rev. A 70, 053824(2004).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001).
[CrossRef]

Ultramicroscopy (1)

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

Other (3)

P. Megret, L. Wuilmart, J. C. Froidure, and M. Blondel, “Bit-error-rate in optical fiber links with optical reflections,” in Proceedings of IEEE Conference on Lasers-and-Electro-Optics-Society (IEEE, 1997), Vol. 2, pp. 87-89.

R. Day, “Une nouvelle technique d'imagerie laser basée sur la reinjection décalée en fréquence, laser optical feedback imaging,” Ph.D. thesis (University J. Fourier, 2000), pp. 51-55, http://www-lsp.ujf-grenoble.fr/pdf/theses/dyrd.pdf.

J. M. Mackowski, “Coatings principles,” in Optics in Astrophysics: Proceedings of the NATO Advanced Study Institute on Optics in Astrophysics, R. Foy and F. -C. Foy, eds. (Springer, 2005), Vol. 198, pp. 327-342.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Description of the classical LOFI experiment.

Fig. 2
Fig. 2

Images obtained with and without a significant parasitic reflection ( r P r t ) in the classical LOFI setup (All the images have been realized at frequency Ω: (a) amplitude image without parasitic reflection; (b) phase image without parasitic reflection; (c) amplitude image with parasitic reflection; (d) phase image without parasitic reflection.

Fig. 3
Fig. 3

Quasi-self-aligned experimental setup insensitive to optical parasitic reflection.

Fig. 4
Fig. 4

Principle of the optical isolation: (o) ordinary and (e) extraordinary polarization.

Fig. 5
Fig. 5

Images obtained with parasitic reflection located beyond the quarter-wavelength retardation plate in proposed quasi-self-aligned setup: (a) amplitude image realized at frequency Ω / 2 and (b) phase image realized at frequency Ω / 2 .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = G LOFI r t 2 + r P 2 + 2 r t r P cos ( ϕ t ϕ p ) P out ,
ϕ = a tan [ r t sin ( ϕ t ) + r P sin ( ϕ p ) r t cos ( ϕ t ) + r P cos ( ϕ p ) ] ,

Metrics