Abstract

Defocusing the recording material away from the Fourier plane is necessary to reduce the strong dc component and produce a more homogeneous object beam distribution in the hologram plane in volume holographic digital data-storage systems with amplitude-modulated data pages. However, content- addressable searching with defocused recording results in higher cross-correlation peak intensities. We present a method for performing a faithful content-addressable search in a defocused volume holographic data-storage system. A new dc-filtered content-addressable search method for defocused volume holographic data-storage systems with binary data pages is demonstrated. Both simulation and experimental results are presented. The experimental results show good discrimination capability and confirm the feasibility of the proposed technique.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).
  2. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
    [CrossRef] [PubMed]
  3. G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, “Content-addressable data storage by use of volume holograms,” Appl. Opt. 38, 6779-6784 (1999).
    [CrossRef]
  4. F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, “Content-addressable holographic databases,” Proc. SPIE 4109, 177-188 (2000).
    [CrossRef]
  5. G. A. Betzos, A. Lasisné, and P. A. Mitkas, “Improved associative recall of binary data in volume holographic memories,” Opt. Commun. 171, 37-44 (1999).
    [CrossRef]
  6. Y. Liao, Y. Guo, L. Cao, X. Ma, Q. He, and G. Jin, “Experiment on parallel correlated recognition of 2030 human faces based on speckle modulation,” Opt. Express 12, 4047-4052 (2004).
    [CrossRef] [PubMed]
  7. R. K. Kostuk, M. P. Bernal Artajona, and Q. Gao, “Beam conditioning techniques for holographic recording systems,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer-Verlag, 2000), pp. 259-269.
  8. J. Joseph and D. A. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45, 6374-6380 (2006).
    [CrossRef] [PubMed]
  9. L. Domjan, P. Koppa, G. Szarvas, and J. Remenyi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane homogenization in holographic data storage,” Optik (Jena) 113, 382-390 (2002).
    [CrossRef]
  10. B. Das, J. Joseph, and K. Singh, “Performance analysis of content-addressable search and bit-error rate characteristics of a defocused volume holographic data storage system,” Appl. Opt. 46, 5461-5470 (2007).
    [CrossRef] [PubMed]
  11. B. Das, J. Joseph, and K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error-rate and content-addressable search,” Opt. Commun. 282, 177-184 (2009).
  12. B. M. King and M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39, 6681-6687 (2000).
    [CrossRef]
  13. B. M. King, G. W. Burr, and M. A. Neifeld, “Experimental demonstration of gray-scale sparse modulation codes in volume holographic storage,” Appl. Opt. 42, 2546-2559 (2003).
    [CrossRef] [PubMed]
  14. B. J. Goertzen and P. A. Mitkas, “Volume holographic storage for large relational databases,” Opt. Eng. 35, 1847-1853 (1996).
    [CrossRef]
  15. D. A. Waldman and J. Joseph, “Method and apparatus for phase-encoded homogenized Fourier transform holographic data storage and recovery,” U.S. patent 7,411,708 (12 August 2008).
  16. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  17. M. J. O'Callaghan, “Sorting through the lore of phase mask options: performance measures and practical commercial designs,” Proc. SPIE 5362, 150-159 (2004).
    [CrossRef]
  18. J.-S. Jang and D.-H. Shin, “Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic-liquid-crystal display for holographic digital data storage,” Opt. Lett. 26, 1797-1799 (2001).
    [CrossRef]
  19. R. John, J. Joseph, and K. Singh, “Content-addressable holographic digital data storage based on hybrid ternary modulation with a twisted-nematic liquid-crystal spatial light modulator,” Opt. Rev. 12, 155-160 (2005).
    [CrossRef]
  20. R. John, J. Joseph, and K. Singh, “An input-data page modulation scheme for content-addressable holographic digital data storage,” Opt. Commun. 249, 387-395 (2005).
    [CrossRef]

2007

2006

2005

R. John, J. Joseph, and K. Singh, “Content-addressable holographic digital data storage based on hybrid ternary modulation with a twisted-nematic liquid-crystal spatial light modulator,” Opt. Rev. 12, 155-160 (2005).
[CrossRef]

R. John, J. Joseph, and K. Singh, “An input-data page modulation scheme for content-addressable holographic digital data storage,” Opt. Commun. 249, 387-395 (2005).
[CrossRef]

2004

2003

2002

L. Domjan, P. Koppa, G. Szarvas, and J. Remenyi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane homogenization in holographic data storage,” Optik (Jena) 113, 382-390 (2002).
[CrossRef]

2001

2000

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, “Content-addressable holographic databases,” Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

B. M. King and M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39, 6681-6687 (2000).
[CrossRef]

1999

G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, “Content-addressable data storage by use of volume holograms,” Appl. Opt. 38, 6779-6784 (1999).
[CrossRef]

G. A. Betzos, A. Lasisné, and P. A. Mitkas, “Improved associative recall of binary data in volume holographic memories,” Opt. Commun. 171, 37-44 (1999).
[CrossRef]

1996

B. J. Goertzen and P. A. Mitkas, “Volume holographic storage for large relational databases,” Opt. Eng. 35, 1847-1853 (1996).
[CrossRef]

Bernal Artajona, M. P.

R. K. Kostuk, M. P. Bernal Artajona, and Q. Gao, “Beam conditioning techniques for holographic recording systems,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer-Verlag, 2000), pp. 259-269.

Betzos, G. A.

G. A. Betzos, A. Lasisné, and P. A. Mitkas, “Improved associative recall of binary data in volume holographic memories,” Opt. Commun. 171, 37-44 (1999).
[CrossRef]

Bjornson, E.

Burr, G. W.

Cao, L.

Coufal, H.

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, “Content-addressable holographic databases,” Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, “Content-addressable data storage by use of volume holograms,” Appl. Opt. 38, 6779-6784 (1999).
[CrossRef]

Das, B.

B. Das, J. Joseph, and K. Singh, “Performance analysis of content-addressable search and bit-error rate characteristics of a defocused volume holographic data storage system,” Appl. Opt. 46, 5461-5470 (2007).
[CrossRef] [PubMed]

B. Das, J. Joseph, and K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error-rate and content-addressable search,” Opt. Commun. 282, 177-184 (2009).

Domjan, L.

L. Domjan, P. Koppa, G. Szarvas, and J. Remenyi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane homogenization in holographic data storage,” Optik (Jena) 113, 382-390 (2002).
[CrossRef]

Gao, Q.

R. K. Kostuk, M. P. Bernal Artajona, and Q. Gao, “Beam conditioning techniques for holographic recording systems,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer-Verlag, 2000), pp. 259-269.

Goertzen, B. J.

B. J. Goertzen and P. A. Mitkas, “Volume holographic storage for large relational databases,” Opt. Eng. 35, 1847-1853 (1996).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Grawert, F.

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, “Content-addressable holographic databases,” Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

Guo, Y.

Hanssen, H.

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, “Content-addressable holographic databases,” Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, “Content-addressable data storage by use of volume holograms,” Appl. Opt. 38, 6779-6784 (1999).
[CrossRef]

He, Q.

Hesselink, L.

Jang, J.-S.

Jefferson, C. M.

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, “Content-addressable holographic databases,” Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

Jin, G.

John, R.

R. John, J. Joseph, and K. Singh, “Content-addressable holographic digital data storage based on hybrid ternary modulation with a twisted-nematic liquid-crystal spatial light modulator,” Opt. Rev. 12, 155-160 (2005).
[CrossRef]

R. John, J. Joseph, and K. Singh, “An input-data page modulation scheme for content-addressable holographic digital data storage,” Opt. Commun. 249, 387-395 (2005).
[CrossRef]

Joseph, J.

B. Das, J. Joseph, and K. Singh, “Performance analysis of content-addressable search and bit-error rate characteristics of a defocused volume holographic data storage system,” Appl. Opt. 46, 5461-5470 (2007).
[CrossRef] [PubMed]

J. Joseph and D. A. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45, 6374-6380 (2006).
[CrossRef] [PubMed]

R. John, J. Joseph, and K. Singh, “An input-data page modulation scheme for content-addressable holographic digital data storage,” Opt. Commun. 249, 387-395 (2005).
[CrossRef]

R. John, J. Joseph, and K. Singh, “Content-addressable holographic digital data storage based on hybrid ternary modulation with a twisted-nematic liquid-crystal spatial light modulator,” Opt. Rev. 12, 155-160 (2005).
[CrossRef]

D. A. Waldman and J. Joseph, “Method and apparatus for phase-encoded homogenized Fourier transform holographic data storage and recovery,” U.S. patent 7,411,708 (12 August 2008).

B. Das, J. Joseph, and K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error-rate and content-addressable search,” Opt. Commun. 282, 177-184 (2009).

Jurich, M.

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, “Content-addressable holographic databases,” Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

King, B. M.

Kobras, S.

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, “Content-addressable holographic databases,” Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, “Content-addressable data storage by use of volume holograms,” Appl. Opt. 38, 6779-6784 (1999).
[CrossRef]

Koppa, P.

L. Domjan, P. Koppa, G. Szarvas, and J. Remenyi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane homogenization in holographic data storage,” Optik (Jena) 113, 382-390 (2002).
[CrossRef]

Kostuk, R. K.

R. K. Kostuk, M. P. Bernal Artajona, and Q. Gao, “Beam conditioning techniques for holographic recording systems,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer-Verlag, 2000), pp. 259-269.

Kwan, D.

Lasisné, A.

G. A. Betzos, A. Lasisné, and P. A. Mitkas, “Improved associative recall of binary data in volume holographic memories,” Opt. Commun. 171, 37-44 (1999).
[CrossRef]

Liao, Y.

Ma, X.

Mitkas, P. A.

G. A. Betzos, A. Lasisné, and P. A. Mitkas, “Improved associative recall of binary data in volume holographic memories,” Opt. Commun. 171, 37-44 (1999).
[CrossRef]

B. J. Goertzen and P. A. Mitkas, “Volume holographic storage for large relational databases,” Opt. Eng. 35, 1847-1853 (1996).
[CrossRef]

Neifeld, M. A.

O'Callaghan, M. J.

M. J. O'Callaghan, “Sorting through the lore of phase mask options: performance measures and practical commercial designs,” Proc. SPIE 5362, 150-159 (2004).
[CrossRef]

Okas, R.

Orlov, S. S.

Phillips, W.

Remenyi, J.

L. Domjan, P. Koppa, G. Szarvas, and J. Remenyi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane homogenization in holographic data storage,” Optik (Jena) 113, 382-390 (2002).
[CrossRef]

Riedel, M.

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, “Content-addressable holographic databases,” Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

Shin, D.-H.

Singh, K.

B. Das, J. Joseph, and K. Singh, “Performance analysis of content-addressable search and bit-error rate characteristics of a defocused volume holographic data storage system,” Appl. Opt. 46, 5461-5470 (2007).
[CrossRef] [PubMed]

R. John, J. Joseph, and K. Singh, “An input-data page modulation scheme for content-addressable holographic digital data storage,” Opt. Commun. 249, 387-395 (2005).
[CrossRef]

R. John, J. Joseph, and K. Singh, “Content-addressable holographic digital data storage based on hybrid ternary modulation with a twisted-nematic liquid-crystal spatial light modulator,” Opt. Rev. 12, 155-160 (2005).
[CrossRef]

B. Das, J. Joseph, and K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error-rate and content-addressable search,” Opt. Commun. 282, 177-184 (2009).

Snyder, R.

Sundaram, P.

Szarvas, G.

L. Domjan, P. Koppa, G. Szarvas, and J. Remenyi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane homogenization in holographic data storage,” Optik (Jena) 113, 382-390 (2002).
[CrossRef]

Takashima, Y.

Waldman, D. A.

J. Joseph and D. A. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45, 6374-6380 (2006).
[CrossRef] [PubMed]

D. A. Waldman and J. Joseph, “Method and apparatus for phase-encoded homogenized Fourier transform holographic data storage and recovery,” U.S. patent 7,411,708 (12 August 2008).

Appl. Opt.

Opt. Commun.

G. A. Betzos, A. Lasisné, and P. A. Mitkas, “Improved associative recall of binary data in volume holographic memories,” Opt. Commun. 171, 37-44 (1999).
[CrossRef]

R. John, J. Joseph, and K. Singh, “An input-data page modulation scheme for content-addressable holographic digital data storage,” Opt. Commun. 249, 387-395 (2005).
[CrossRef]

Opt. Eng.

B. J. Goertzen and P. A. Mitkas, “Volume holographic storage for large relational databases,” Opt. Eng. 35, 1847-1853 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

R. John, J. Joseph, and K. Singh, “Content-addressable holographic digital data storage based on hybrid ternary modulation with a twisted-nematic liquid-crystal spatial light modulator,” Opt. Rev. 12, 155-160 (2005).
[CrossRef]

Optik (Jena)

L. Domjan, P. Koppa, G. Szarvas, and J. Remenyi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane homogenization in holographic data storage,” Optik (Jena) 113, 382-390 (2002).
[CrossRef]

Proc. SPIE

M. J. O'Callaghan, “Sorting through the lore of phase mask options: performance measures and practical commercial designs,” Proc. SPIE 5362, 150-159 (2004).
[CrossRef]

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, “Content-addressable holographic databases,” Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

Other

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).

R. K. Kostuk, M. P. Bernal Artajona, and Q. Gao, “Beam conditioning techniques for holographic recording systems,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer-Verlag, 2000), pp. 259-269.

B. Das, J. Joseph, and K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error-rate and content-addressable search,” Opt. Commun. 282, 177-184 (2009).

D. A. Waldman and J. Joseph, “Method and apparatus for phase-encoded homogenized Fourier transform holographic data storage and recovery,” U.S. patent 7,411,708 (12 August 2008).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Normalized correlation peak heights (a.u.) versus the size of the search argument for balanced data pages; autocorrelation (dots, amplitude; open circles, phase; and squares, dc filtering) and cross correlation (diamonds, amplitude; triangles, phase; and crosses, dc filtering).

Fig. 2
Fig. 2

Normalized correlation peak heights (a.u.) versus size of the search argument for 25% sparse-data pages; autocorrelation (dots, amplitude; open circles, phase; and squares, dc filtering) and cross correlation (diamonds, amplitude; triangles, phase; and crosses, dc filtering).

Fig. 3
Fig. 3

Plot of R as a function of sparsity (%) of the data page: open circles, phase page; squares, amplitude page.

Fig. 4
Fig. 4

Normalized correlation peak heights (a.u.) versus size of the filter in the FT plane for a balanced data page and the full data page as the search argument: dots, autocorrelation. and squares, cross correlation. The filter size is represented as the number of blocked pixels in the FT plane in one direction for a square aperture.

Fig. 5
Fig. 5

Experimental setup for content-addressable memory: PBS, polarizing beam splitter; SLM, spatial light modulator; PRC, photorefractive crystal; M rot , mirror mounted on precision rotation stage; Ms, mirrors; Ls, lenses; and CCD, charge-coupled device.

Fig. 6
Fig. 6

Experimental results of the associative recall for balanced data pages when searched with the tenth data page: (a) amplitude-based searching, (b) phase-based searching, and (c) dc-filtering-based searching. (d), (e), and (f) are the 1D plots of the normalized correlation peaks for (a), (b), and (c), respectively.

Fig. 7
Fig. 7

Experimental results of the associative recall for 25% sparse-data page pages when searched with the tenth data page: (a) amplitude-based searching, (b) phase-based searching, and (c) dc-filtering-based searching. (d), (e), and (f) are the 1D plots of the normalized correlation peaks for (a), (b), and (c), respectively.

Fig. 8
Fig. 8

Discrimination ratio plot with size of the search argument for balanced data pages. Squares, amplitude-based searching; exes, phase-based searching; and triangles, DC-filtering-based searching.

Fig. 9
Fig. 9

Discrimination ratio plot with size of the search argument for 25% sparse-data pages. Squares, amplitude-based searching; exes, phase based searching; and triangles, dc-filtering-based searching.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

O ( x 2 , y 2 ) = O ( x 1 , y 1 ) × exp [ j 2 π λ f ( x 1 x 2 + y 1 y 2 ) ] d x 1 d y 1 .
O ( x 3 , y 3 ) = exp [ j π λ z ( x 3 2 + y 3 2 ) ] O ( x 2 , y 2 ) × exp [ j π λ z ( x 2 2 + y 2 2 ) ] × exp [ - j 2 π λ z ( x 2 x 3 + y 2 y 3 ) ] d x 2 d y 2 ,
| O ( x 3 , y 3 ) + e j k r r | 2 .
P ( x 3 , y 3 ) = { P a ( x 3 , y 3 ) when the input-data page is in amplitude mode P p ( x 3 , y 3 ) when the input-data page is in phase mode P a _ d ( x 3 , y 3 ) when the input-data page is in amplitude mode and a dc-filtering operation in the FT plane .
P ( x 3 , y 3 ) O * ( x 3 , y 3 ) e - j k r r , P ( x 3 , y 3 ) O ( x 3 , y 3 ) e j k r r .
FT { P ( x 3 , y 3 ) O * ( x 3 , y 3 ) } .
R ( dB ) = 10 log ( I dc I ac ) ,
DR = 1 - Mean of the cross-correlation peak Autocorrelation peak height .

Metrics