Abstract

The fundamental principles of the operation of a thin-disk laser are presented. We derived equations from a set of coupled rate equations that predict that the characteristics of a laser are affected by the Boltzmann occupation factors of the pump and the laser states simultaneously. The model is used to investigate the influence of the effective parameters on the operational efficiency of an end-pumped Yb:YAG disk laser. Based on our results, we examined laser output power as a function of output coupler reflectivity, crystal thickness or doping concentration, number of the pump beam passes, and temperature.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
    [CrossRef]
  2. K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, C. Stewen, and A. Voss, “Simulations of the lasing properties of a thin-disk laser combining high-output powers with good beam quality,” Proc. SPIE 2989, 23-34 (1997).
    [CrossRef]
  3. K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29, 697-703 (1999).
    [CrossRef]
  4. A. J. Kamp, G. J. Valentine, and D. Burns, “Review: progress towards high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron. 28, 305-344(2004).
    [CrossRef]
  5. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
    [CrossRef]
  6. W. Koechner, Solid State Laser Engineering, 6th ed., Springer Series in Optical Sciences (Springer, 2006).
  7. P. Peterson, A. Gavrielides, and P. M. Sharma, “CW theory of a laser diode-pumped two-manifold solid state laser,” Opt. Commun. 109, 282-287 (1994).
    [CrossRef]
  8. R. J. Beach, “CW theory of quasi-three-level end-pumped laser oscillators,” Opt. Commun. 123, 385-393 (1996).
    [CrossRef]
  9. T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of CW Yb:YAG lasers,” Appl. Opt. 36, 1867-1874 (1997).
    [CrossRef] [PubMed]
  10. C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 306-311(2002).
    [CrossRef]
  11. O. Casagrande, N. Deguil-Robin, B. Le Garrec, and G. L. Bourdet, “Time and spectrum resolved model for quasi-three-level gain-switched lasers,” IEEE J. Quantum Electron. 43, 206-212 (2007).
    [CrossRef]
  12. W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487-2492 (1965).
    [CrossRef]
  13. G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb+3 ions,” Zh. Eksp. Teor. Fiz. 69, 860 (1975) [Sov. Phys. JETP 42, 440-446 (1975)].
  14. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
    [CrossRef]
  15. C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. A. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010-2019 (1998).
    [CrossRef]
  16. D. W. Hall, M. J. Weber, and R. T. Brundage, “Fluorescence line narrowing in neodymium laser glasses,” J. Appl. Phys. 55, 2642-2648 (1984).
    [CrossRef]
  17. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412-1423 (1988).
    [CrossRef]
  18. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B. 20, 1975-1979 (2003).
    [CrossRef]
  19. Q. Liu ,X. Fu, M. Gong, and L. Huang, “Effects of the temperature dependence of the absorption coefficients in edge-pumped Yb:YAG slab lasers,” J. Opt. Soc. Am. B 24, 2081-2089 (2007).
    [CrossRef]

2007 (3)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[CrossRef]

O. Casagrande, N. Deguil-Robin, B. Le Garrec, and G. L. Bourdet, “Time and spectrum resolved model for quasi-three-level gain-switched lasers,” IEEE J. Quantum Electron. 43, 206-212 (2007).
[CrossRef]

Q. Liu ,X. Fu, M. Gong, and L. Huang, “Effects of the temperature dependence of the absorption coefficients in edge-pumped Yb:YAG slab lasers,” J. Opt. Soc. Am. B 24, 2081-2089 (2007).
[CrossRef]

2004 (1)

A. J. Kamp, G. J. Valentine, and D. Burns, “Review: progress towards high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron. 28, 305-344(2004).
[CrossRef]

2003 (1)

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B. 20, 1975-1979 (2003).
[CrossRef]

2002 (1)

C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 306-311(2002).
[CrossRef]

1999 (1)

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29, 697-703 (1999).
[CrossRef]

1998 (1)

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. A. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[CrossRef]

1997 (3)

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, C. Stewen, and A. Voss, “Simulations of the lasing properties of a thin-disk laser combining high-output powers with good beam quality,” Proc. SPIE 2989, 23-34 (1997).
[CrossRef]

T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of CW Yb:YAG lasers,” Appl. Opt. 36, 1867-1874 (1997).
[CrossRef] [PubMed]

1996 (1)

R. J. Beach, “CW theory of quasi-three-level end-pumped laser oscillators,” Opt. Commun. 123, 385-393 (1996).
[CrossRef]

1994 (2)

P. Peterson, A. Gavrielides, and P. M. Sharma, “CW theory of a laser diode-pumped two-manifold solid state laser,” Opt. Commun. 109, 282-287 (1994).
[CrossRef]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

1988 (1)

1984 (1)

D. W. Hall, M. J. Weber, and R. T. Brundage, “Fluorescence line narrowing in neodymium laser glasses,” J. Appl. Phys. 55, 2642-2648 (1984).
[CrossRef]

1975 (1)

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb+3 ions,” Zh. Eksp. Teor. Fiz. 69, 860 (1975) [Sov. Phys. JETP 42, 440-446 (1975)].

1965 (1)

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487-2492 (1965).
[CrossRef]

Bass, M.

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B. 20, 1975-1979 (2003).
[CrossRef]

Beach, R. J.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. A. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[CrossRef]

R. J. Beach, “CW theory of quasi-three-level end-pumped laser oscillators,” Opt. Commun. 123, 385-393 (1996).
[CrossRef]

Bibeau, C.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. A. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[CrossRef]

Bogomolova, G. A.

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb+3 ions,” Zh. Eksp. Teor. Fiz. 69, 860 (1975) [Sov. Phys. JETP 42, 440-446 (1975)].

Bourdet, G. L.

O. Casagrande, N. Deguil-Robin, B. Le Garrec, and G. L. Bourdet, “Time and spectrum resolved model for quasi-three-level gain-switched lasers,” IEEE J. Quantum Electron. 43, 206-212 (2007).
[CrossRef]

Brauch, U.

K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, C. Stewen, and A. Voss, “Simulations of the lasing properties of a thin-disk laser combining high-output powers with good beam quality,” Proc. SPIE 2989, 23-34 (1997).
[CrossRef]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

Brundage, R. T.

D. W. Hall, M. J. Weber, and R. T. Brundage, “Fluorescence line narrowing in neodymium laser glasses,” J. Appl. Phys. 55, 2642-2648 (1984).
[CrossRef]

Burns, D.

A. J. Kamp, G. J. Valentine, and D. Burns, “Review: progress towards high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron. 28, 305-344(2004).
[CrossRef]

Byer, R. L.

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

Casagrande, O.

O. Casagrande, N. Deguil-Robin, B. Le Garrec, and G. L. Bourdet, “Time and spectrum resolved model for quasi-three-level gain-switched lasers,” IEEE J. Quantum Electron. 43, 206-212 (2007).
[CrossRef]

Contag, K.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29, 697-703 (1999).
[CrossRef]

K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, C. Stewen, and A. Voss, “Simulations of the lasing properties of a thin-disk laser combining high-output powers with good beam quality,” Proc. SPIE 2989, 23-34 (1997).
[CrossRef]

Deguil-Robin, N.

O. Casagrande, N. Deguil-Robin, B. Le Garrec, and G. L. Bourdet, “Time and spectrum resolved model for quasi-three-level gain-switched lasers,” IEEE J. Quantum Electron. 43, 206-212 (2007).
[CrossRef]

Deng, P.

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B. 20, 1975-1979 (2003).
[CrossRef]

Dong, J.

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B. 20, 1975-1979 (2003).
[CrossRef]

Ebbers, C. A.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. A. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[CrossRef]

Emanuel, M. A.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. A. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[CrossRef]

Erhard, S.

K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, C. Stewen, and A. Voss, “Simulations of the lasing properties of a thin-disk laser combining high-output powers with good beam quality,” Proc. SPIE 2989, 23-34 (1997).
[CrossRef]

Fu, X.

Gan, F.

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B. 20, 1975-1979 (2003).
[CrossRef]

Gavrielides, A.

P. Peterson, A. Gavrielides, and P. M. Sharma, “CW theory of a laser diode-pumped two-manifold solid state laser,” Opt. Commun. 109, 282-287 (1994).
[CrossRef]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[CrossRef]

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29, 697-703 (1999).
[CrossRef]

K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, C. Stewen, and A. Voss, “Simulations of the lasing properties of a thin-disk laser combining high-output powers with good beam quality,” Proc. SPIE 2989, 23-34 (1997).
[CrossRef]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Gong, M.

Hall, D. W.

D. W. Hall, M. J. Weber, and R. T. Brundage, “Fluorescence line narrowing in neodymium laser glasses,” J. Appl. Phys. 55, 2642-2648 (1984).
[CrossRef]

Huang, L.

Hugel, H.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29, 697-703 (1999).
[CrossRef]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Izawa, Y.

C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 306-311(2002).
[CrossRef]

Jancaitis, K. S.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. A. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[CrossRef]

Johannsen, I.

K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, C. Stewen, and A. Voss, “Simulations of the lasing properties of a thin-disk laser combining high-output powers with good beam quality,” Proc. SPIE 2989, 23-34 (1997).
[CrossRef]

Kaminskii, A. A.

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb+3 ions,” Zh. Eksp. Teor. Fiz. 69, 860 (1975) [Sov. Phys. JETP 42, 440-446 (1975)].

Kamp, A. J.

A. J. Kamp, G. J. Valentine, and D. Burns, “Review: progress towards high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron. 28, 305-344(2004).
[CrossRef]

Karszewski, M.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29, 697-703 (1999).
[CrossRef]

K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, C. Stewen, and A. Voss, “Simulations of the lasing properties of a thin-disk laser combining high-output powers with good beam quality,” Proc. SPIE 2989, 23-34 (1997).
[CrossRef]

Koechner, W.

W. Koechner, Solid State Laser Engineering, 6th ed., Springer Series in Optical Sciences (Springer, 2006).

Le Garrec, B.

O. Casagrande, N. Deguil-Robin, B. Le Garrec, and G. L. Bourdet, “Time and spectrum resolved model for quasi-three-level gain-switched lasers,” IEEE J. Quantum Electron. 43, 206-212 (2007).
[CrossRef]

Lim, C.

C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 306-311(2002).
[CrossRef]

Liu, Q.

Mao, Y.

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B. 20, 1975-1979 (2003).
[CrossRef]

Mitchell, S. C.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. A. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[CrossRef]

Opower, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Peterson, P.

P. Peterson, A. Gavrielides, and P. M. Sharma, “CW theory of a laser diode-pumped two-manifold solid state laser,” Opt. Commun. 109, 282-287 (1994).
[CrossRef]

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

Rigrod, W. W.

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487-2492 (1965).
[CrossRef]

Risk, W. P.

Sharma, P. M.

P. Peterson, A. Gavrielides, and P. M. Sharma, “CW theory of a laser diode-pumped two-manifold solid state laser,” Opt. Commun. 109, 282-287 (1994).
[CrossRef]

Skidmore, J. A.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. A. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[CrossRef]

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[CrossRef]

Stewen, C.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29, 697-703 (1999).
[CrossRef]

K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, C. Stewen, and A. Voss, “Simulations of the lasing properties of a thin-disk laser combining high-output powers with good beam quality,” Proc. SPIE 2989, 23-34 (1997).
[CrossRef]

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

Sutton, S. B.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. A. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[CrossRef]

Taira, T.

Tulloch, W. M.

Valentine, G. J.

A. J. Kamp, G. J. Valentine, and D. Burns, “Review: progress towards high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron. 28, 305-344(2004).
[CrossRef]

Voss, A.

K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, C. Stewen, and A. Voss, “Simulations of the lasing properties of a thin-disk laser combining high-output powers with good beam quality,” Proc. SPIE 2989, 23-34 (1997).
[CrossRef]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Vylegzhanin, D. N.

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb+3 ions,” Zh. Eksp. Teor. Fiz. 69, 860 (1975) [Sov. Phys. JETP 42, 440-446 (1975)].

Weber, M. J.

D. W. Hall, M. J. Weber, and R. T. Brundage, “Fluorescence line narrowing in neodymium laser glasses,” J. Appl. Phys. 55, 2642-2648 (1984).
[CrossRef]

Wittig, K.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

IEEE J. Quantum Electron. (3)

C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 306-311(2002).
[CrossRef]

O. Casagrande, N. Deguil-Robin, B. Le Garrec, and G. L. Bourdet, “Time and spectrum resolved model for quasi-three-level gain-switched lasers,” IEEE J. Quantum Electron. 43, 206-212 (2007).
[CrossRef]

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. A. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[CrossRef]

J. Appl. Phys. (2)

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487-2492 (1965).
[CrossRef]

D. W. Hall, M. J. Weber, and R. T. Brundage, “Fluorescence line narrowing in neodymium laser glasses,” J. Appl. Phys. 55, 2642-2648 (1984).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Opt. Soc. Am. B. (1)

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B. 20, 1975-1979 (2003).
[CrossRef]

Opt. Commun. (2)

P. Peterson, A. Gavrielides, and P. M. Sharma, “CW theory of a laser diode-pumped two-manifold solid state laser,” Opt. Commun. 109, 282-287 (1994).
[CrossRef]

R. J. Beach, “CW theory of quasi-three-level end-pumped laser oscillators,” Opt. Commun. 123, 385-393 (1996).
[CrossRef]

Proc. SPIE (1)

K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, C. Stewen, and A. Voss, “Simulations of the lasing properties of a thin-disk laser combining high-output powers with good beam quality,” Proc. SPIE 2989, 23-34 (1997).
[CrossRef]

Prog. Quantum Electron. (1)

A. J. Kamp, G. J. Valentine, and D. Burns, “Review: progress towards high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron. 28, 305-344(2004).
[CrossRef]

Quantum Electron. (1)

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29, 697-703 (1999).
[CrossRef]

Zh. Eksp. Teor. Fiz. (1)

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb+3 ions,” Zh. Eksp. Teor. Fiz. 69, 860 (1975) [Sov. Phys. JETP 42, 440-446 (1975)].

Other (1)

W. Koechner, Solid State Laser Engineering, 6th ed., Springer Series in Optical Sciences (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the pump setup for a thin-disk laser.

Fig. 2
Fig. 2

Stark level spectroscopy of Yb 3 + : YAG . The indicated values of the Boltzmann occupation factors were calculated at room temperature. The indicated cross sections are referenced to the Stark level populations.

Fig. 3
Fig. 3

Laser output and threshold intensities versus OCL. The other involved parameters are I P . o = 5 ̲ ( kW / cm 2 ) , T = 300 ̲ ( K ) , R r , P = 98 % ̲ , R f , P = 99 % ̲ , R r , L = 98 % ̲ , and R f , L = 97 % ̲ . The numbers of pump beam passes are shown at the right-hand side of the graph. As the number of beam passes increases, the optimal crystal length decreases.

Fig. 4
Fig. 4

Output laser and threshold intensities versus temperature: I P . o = 5 ( kW / cm 2 ) , R r , P = 98 % ̲ , R f , P = 99 % ̲ , R r , L = 98 % ̲ , and R f , L = 97 % ̲ . The number of pump beam passes is 16. As the temperature increases, the laser output intensity drops while threshold intensity increases.

Fig. 5
Fig. 5

Output laser intensity versus OCL and output coupler reflectivity simultaneously: I P . o = 5 ̲ ( kW / cm 2 ) , R r , P = 98 % ̲ , R f , P = 99 % ̲ , R r , L = 98 % ̲ , and R f , L vary from 75% to 100%. The number of pump beam passes is 16.

Fig. 6
Fig. 6

Output laser intensity versus output coupler reflectivity. The maximum output intensity is 2.089 ( kW / cm 2 ) for an output coupler reflectivity value of 91%.

Fig. 7
Fig. 7

Output laser intensity versus the total absorbed pump intensity: OCL of 0.2, R r , P = 98 % , R f , P = 99 % , R r , L = 98 % , and R f , L = 97 % , and T = 399 K . The number of pump beam passes is also shown. The laser output intensity has a linear relationship with the total absorbed pump intensity in all cases.

Fig. 8
Fig. 8

Change in total absorbed pump intensity versus OCL. The working conditions are the same as in the previous graphs. The number of beam passes is shown at the right-hand side.

Equations (46)

Equations on this page are rendered with MathJax. Learn more.

N 1 ( t , z ) t = N 0 ( t , z ) t = σ P ( f 0 P N 0 f 1 P N 1 ) i = 1 N ( I P . i + + I P . i ) h v p + σ L ( f 0 L N 0 f 1 L N 1 ) I L + + I L h V L N 1 τ ,
I P , i ± ( t , z ) z = ± σ P ( f 0 P N 0 f 1 P N 1 ) I P , i ± ,
I L ± ( t , z ) z = ± σ L ( f 0 L N 0 f 1 L N 1 ) I L ± ,
N t = N 0 + N 1 .
σ P ( 941 , T ) = [ 0.207 + 0.637 exp ( T 273 288 ) ] × 10 20 cm 2 ,
σ L ( 1030 , T ) = [ 15.67386 0.07609 T + 1.06911 × 10 4 T 2 ] × 10 20 cm 2 ,
N 1 ( t , z ) t = N 0 ( t , z ) t = 0 ,
N 1 ( z ) = f 0 P P + f 0 L L ( f 0 P + f 1 P ) P + ( f 0 L + f 1 L ) L + 1 τ N t ,
N 0 ( z ) = f 1 P P + f 1 L L + 1 τ ( f 0 P + f 1 P ) P + ( f 0 L + f 1 L ) L + 1 τ N t ,
P = σ P i = 1 N ( I P . i + + I P . i ) h v P ,
L = σ L I L + + I L h v L .
Δ n = N 1 N 0 N t f 0 P f 1 P f 0 P + f 1 P ,
N 0 , sat P = N 1 , sat P f 0 P f 1 P ( f 0 P + f 1 P ) N t .
σ L ( f 0 L + f 1 L ) 1 I P , i ± ( z ) d I P , i ± ( z ) d z σ P ( f 0 P + f 1 P ) 1 I L ± ( z ) d I L ± ( z ) d z = ± N t σ L σ P ( f 0 L f 1 P f 1 L f 0 P ) ,
1 σ P ( f 0 P N 0 f 1 P N 1 ) d I P , i ± ( z ) I P , i ± ( z ) = 1 σ L ( f 0 L N 0 f 1 L N 1 ) d I L ± ( z ) I L ± ( z ) .
r ight { I P , i ( l ) = R r , P I P , i + ( l ) I L ( l ) = R r , L I L + ( l ) ,
l eft { I P , i + 1 + ( 0 ) = R f , P I P , i ( 0 ) I L + ( 0 ) = R f , L I L ( 0 ) .
R r , L I L + ( l ) 2 = R f , L I L ( 0 ) 2 .
σ L ( f 0 L + f 1 L ) L n I P , i ± ( z ) I P , i ± ( 0 ) σ P ( f 0 P + f 1 P ) l n I L ± ( z ) I L ± ( 0 ) = ± N t σ L σ P ( f 0 L f 1 P f 1 L f 0 P ) z ,
yields σ L ( f 0 L + f 1 L ) Ln I P , i ± ( z ) I P , i ± ( 0 ) σ P ( f 0 P + f 1 P ) ln I L ± ( z ) I L ± ( 0 ) = Δ N t σ L σ P z ,
Δ f 1 L f 0 P f 0 L f 1 P .
i f z = l yields { I P , i + ( l ) = I P , i + ( 0 ) exp [ δ e ] I P , i ( 0 ) = I P , i ( l ) exp [ δ e ] ,
σ e = σ P Δ ( f 0 L + f 1 L ) N t l + σ P σ L ( f 0 P + f 1 P ) ( f 0 L + f 1 L ) Ln 1 R r , L R f , L .
( f 0 L τ Δ P ) 1 σ P d I P , i ± I P , i ± = ( f 0 P τ + Δ L ) 1 σ L d I L ± I L ± ,
yields f 0 L σ P τ d I P , i ± I P , i ± Δ h v P [ i = 1 N ( I P . i + + I P . i ) ] d I P , i ± I P , i ± = f 0 P σ L τ d I L ± I L ± + Δ h v L ( I L + + I L ) d I L ± I L ± .
( + ) I L + ( l ) = A + B + ( I P , 0 + C + A + ) ,
( ) I L ( l ) = A B ( I P , 0 + C A ) ,
A + = + Δ h v P [ 1 exp ( δ e ) ] [ 1 + R r , P exp ( δ e ) ] { i = 1 N R r , P i 1 R f , P i 1 exp [ 2 ( i 1 ) δ e ] } ,
A = Δ h v P [ 1 exp ( δ e ) ] [ 1 + R r , P exp ( δ e ) ] { i = 1 N R r , P i 1 R f , P i 1 exp [ 2 ( i 1 ) δ e ] } ,
B + = Δ h v L ( 1 R r , L R f , L ) ( 1 + R r , L R f , L ) ,
B = Δ h v L ( 1 1 R r , L R f , L ) ( 1 + R f , L R r , L ) ,
C + = + [ f 0 L σ P δ e + 1 2 f 0 P σ L τ × Ln ( R r , L R f , L ) ] ,
C = [ f 0 L σ P δ e + 1 2 f 0 P σ L τ × Ln ( R r , L R f , L ) ] .
( + ) I out + = ( 1 R r , L ) I L + ( l ) ,
( ) I out = ( 1 R f , L ) 1 R r , L R f , L I L ( l ) ,
I out ± = η slope ± ( I P , 0 I th ) ,
η slope ± = ( 1 R r , L ) ( 1 R r , L × R f , L ) ( 1 + R r , L R f , L ) v L v P [ 1 exp ( δ e ) ] [ 1 + R r , P exp ( δ e ) ] { i = 1 N } ,
η slope = ( 1 R r , L ) ( 1 R r , L × R f , L ) ( 1 + R r , L R f , L ) v L v P [ 1 exp ( δ e ) ] [ 1 + R r , P exp ( δ e ) ] { i = 1 N } ,
I th = h v L τ [ f 0 L f 0 L + f 1 L N t l + 1 σ L ( f 0 L + f 1 L ) Ln 1 R r , L R f , L ] v L v P [ 1 exp ( δ e ) ] [ 1 + R r , P exp ( δ e ) ] { i = 1 N R r , P i 1 × R f , P i 1 × exp [ 2 ( i 1 ) δ e ] } .
I tot = I P , 0 I P , f = I P , 0 I P , 0 R f , P i 1 R r , P i exp [ 2 i σ e ] ,
I tot ( the   total   absorbed   pump   intensity ) = I d , tot ( the   total   intensity   dissipated   in   the   mirrors ) + I a , tot ( the   total   absorbed   pump   intensity   in   the   disk ) .
I a , i = I a , i [ 1 + R r , P exp ( δ e ) ] [ 1 exp ( δ e ) ] R f , P i 1 R r , P i 1 exp [ 2 ( i 1 ) δ e ] .
I a , tot = I a , i [ 1 + R r , P exp ( δ e ) ] [ 1 exp ( δ e ) ] { i = 1 N R r , P i 1 R f , P i 1 exp [ 2 ( i 1 ) δ e ] } .
I out + = ( 1 R r , L ) ( 1 R r , L R f , L ) ( 1 + R r , L R f , L ) v L v P [ I a , tot ( h v P τ ) ( f 0 L f 0 L + f 1 L N t l + 1 σ L ( f 0 L + f 1 L ) Ln 1 R r , L R f , L ) ] .
I out + I a , tot .
( 1 I P , 0 ) ( h v P σ P τ ) ( f 0 L Δ ) = ( 1 R r , P ) i = 1 N ( 2 i 1 ) ( R f , P R r , P ) i 1 exp [ ( 2 i 1 ) δ e ] + 2 R r , P ( 1 R f , P ) i = 1 N i ( R f , P R r , P ) i 1 exp [ ( 2 i 1 ) δ e ] .

Metrics