Abstract

Ferrofluids can be used to make deformable mirrors having highly interesting characteristics (e.g., extremely large strokes and low costs). Until recently, such mirrors were thought to be restricted to corrections of frequencies lower than 10Hz, thus limiting their usefulness. We present counterintuitive results that demonstrate that the limiting operational frequency can be increased by increasing the viscosity of the ferrofluid. We tested the response of ferrofluids having viscosities as high as 494cP, finding that they could allow an adaptive optics correction frequency as high as 900Hz. We also demonstrate that we can counter the amplitude loss due to the high viscosity by overdriving the actuators. The overdriving technique combines high current, short duration pulses with ordinary driving step functions to deform the mirror. The integration of a FDM in a complete closed-loop adaptive optics system running at about 500Hz thus appears to be a realistic goal in the near future.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hickson and M. K. Mulrooney, “University of British Columbia-NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35-42 (1998).
    [CrossRef]
  2. R. Cabanac and E. F. Borra, “A search for peculiar objects with the NASA Orbital Debris Observatory 3 m Liquid Mirror Telescope,” Astrophys. J. 509, 309-323 (1998).
    [CrossRef]
  3. R. Sica, S. Sargoytchev, E. F. Borra, L. Girard, S. Argall, C. T. Sarrow, and S. Flatt, “Lidar measurements taken with a large aperture liquid mirror: 1. Rayleigh-scatter system,” Appl. Opt. 34, 6925-6936 (1995).
    [CrossRef] [PubMed]
  4. R. Wuerker, “Bistatic liquid mirror telescope lidar alignment,” Opt. Eng. 36, 1421-1424 (1997).
    [CrossRef]
  5. R. J. Sica and T. Russell, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. Part I,” J. Atmos. Sci. 56, 1308-1329 (1999).
    [CrossRef]
  6. E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, and E. Boily, “Liquid mirrors: Optical shop tests and contributions to the technology,” Astrophys. J. 393, 829-847 (1992).
    [CrossRef]
  7. H. W. Babcock, “Possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
    [CrossRef]
  8. R. Ragazzoni and E. Marchetti, “A liquid adaptive mirror,” Astron. Astrophys. 283, L17-L19 (1994).
  9. E. M. Vuelban, N. Bhattacharya, and J. J. M. Braat, “Liquid deformable mirror for high-order wavefront correction,” Opt. Lett. 31, 1717-1719 (2006).
    [CrossRef] [PubMed]
  10. P. Laird, E. F. Borra, R. Bergamasco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493-1501 (2004).
    [CrossRef]
  11. D. Brousseau, E. F. Borra, and S. Thibault, “Wavefront correction with a 37-actuator ferrofluid deformable mirror,” Opt. Express 15, 18190-18199 (2007).
    [CrossRef] [PubMed]
  12. J. Gingras, J-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A M. Ritcey, “Surface films of silver nanoparticles for new liquid mirrors,” Colloids Surf. A 279, 79-86 (2006).
    [CrossRef]
  13. L. Faucher, E. F. Borra, and A. M. Ritcey, “Use of thiols as protecting ligands in reflective surface films of silver nanoparticles,” J. Nanosci. Nanotechnol. 8, 3900-3908(2008).
    [CrossRef] [PubMed]
  14. R. E. Rosensweig, Ferrohydrodynamics (Dover, 1997).
  15. D. Brousseau, E. F. Borra, H. Jean-Ruel, J. Parent, and A. Ritcey, “A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations,” Opt. Express 14, 11486-11493 (2006).
    [CrossRef] [PubMed]
  16. M. Rioux, “Miroirs déformables à base de ferrofluides,” Master's thesis (Université Laval, 2006).
  17. R. K. Tyson, Principles of Adaptive Optics (Academic, 1999).

2008 (1)

L. Faucher, E. F. Borra, and A. M. Ritcey, “Use of thiols as protecting ligands in reflective surface films of silver nanoparticles,” J. Nanosci. Nanotechnol. 8, 3900-3908(2008).
[CrossRef] [PubMed]

2007 (1)

2006 (3)

2004 (1)

P. Laird, E. F. Borra, R. Bergamasco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493-1501 (2004).
[CrossRef]

1999 (1)

R. J. Sica and T. Russell, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. Part I,” J. Atmos. Sci. 56, 1308-1329 (1999).
[CrossRef]

1998 (2)

P. Hickson and M. K. Mulrooney, “University of British Columbia-NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35-42 (1998).
[CrossRef]

R. Cabanac and E. F. Borra, “A search for peculiar objects with the NASA Orbital Debris Observatory 3 m Liquid Mirror Telescope,” Astrophys. J. 509, 309-323 (1998).
[CrossRef]

1997 (1)

R. Wuerker, “Bistatic liquid mirror telescope lidar alignment,” Opt. Eng. 36, 1421-1424 (1997).
[CrossRef]

1995 (1)

1994 (1)

R. Ragazzoni and E. Marchetti, “A liquid adaptive mirror,” Astron. Astrophys. 283, L17-L19 (1994).

1992 (1)

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, and E. Boily, “Liquid mirrors: Optical shop tests and contributions to the technology,” Astrophys. J. 393, 829-847 (1992).
[CrossRef]

1953 (1)

H. W. Babcock, “Possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Argall, S.

Babcock, H. W.

H. W. Babcock, “Possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Bergamasco, R.

P. Laird, E. F. Borra, R. Bergamasco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493-1501 (2004).
[CrossRef]

Bhattacharya, N.

Boily, E.

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, and E. Boily, “Liquid mirrors: Optical shop tests and contributions to the technology,” Astrophys. J. 393, 829-847 (1992).
[CrossRef]

Borra, E. F.

L. Faucher, E. F. Borra, and A. M. Ritcey, “Use of thiols as protecting ligands in reflective surface films of silver nanoparticles,” J. Nanosci. Nanotechnol. 8, 3900-3908(2008).
[CrossRef] [PubMed]

D. Brousseau, E. F. Borra, and S. Thibault, “Wavefront correction with a 37-actuator ferrofluid deformable mirror,” Opt. Express 15, 18190-18199 (2007).
[CrossRef] [PubMed]

J. Gingras, J-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A M. Ritcey, “Surface films of silver nanoparticles for new liquid mirrors,” Colloids Surf. A 279, 79-86 (2006).
[CrossRef]

D. Brousseau, E. F. Borra, H. Jean-Ruel, J. Parent, and A. Ritcey, “A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations,” Opt. Express 14, 11486-11493 (2006).
[CrossRef] [PubMed]

P. Laird, E. F. Borra, R. Bergamasco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493-1501 (2004).
[CrossRef]

R. Cabanac and E. F. Borra, “A search for peculiar objects with the NASA Orbital Debris Observatory 3 m Liquid Mirror Telescope,” Astrophys. J. 509, 309-323 (1998).
[CrossRef]

R. Sica, S. Sargoytchev, E. F. Borra, L. Girard, S. Argall, C. T. Sarrow, and S. Flatt, “Lidar measurements taken with a large aperture liquid mirror: 1. Rayleigh-scatter system,” Appl. Opt. 34, 6925-6936 (1995).
[CrossRef] [PubMed]

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, and E. Boily, “Liquid mirrors: Optical shop tests and contributions to the technology,” Astrophys. J. 393, 829-847 (1992).
[CrossRef]

Braat, J. J. M.

Brousseau, D.

Cabanac, R.

R. Cabanac and E. F. Borra, “A search for peculiar objects with the NASA Orbital Debris Observatory 3 m Liquid Mirror Telescope,” Astrophys. J. 509, 309-323 (1998).
[CrossRef]

Content, R.

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, and E. Boily, “Liquid mirrors: Optical shop tests and contributions to the technology,” Astrophys. J. 393, 829-847 (1992).
[CrossRef]

Déry, J-P.

J. Gingras, J-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A M. Ritcey, “Surface films of silver nanoparticles for new liquid mirrors,” Colloids Surf. A 279, 79-86 (2006).
[CrossRef]

Faucher, L.

L. Faucher, E. F. Borra, and A. M. Ritcey, “Use of thiols as protecting ligands in reflective surface films of silver nanoparticles,” J. Nanosci. Nanotechnol. 8, 3900-3908(2008).
[CrossRef] [PubMed]

Flatt, S.

Gingras, J.

J. Gingras, J-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A M. Ritcey, “Surface films of silver nanoparticles for new liquid mirrors,” Colloids Surf. A 279, 79-86 (2006).
[CrossRef]

P. Laird, E. F. Borra, R. Bergamasco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493-1501 (2004).
[CrossRef]

Girard, L.

R. Sica, S. Sargoytchev, E. F. Borra, L. Girard, S. Argall, C. T. Sarrow, and S. Flatt, “Lidar measurements taken with a large aperture liquid mirror: 1. Rayleigh-scatter system,” Appl. Opt. 34, 6925-6936 (1995).
[CrossRef] [PubMed]

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, and E. Boily, “Liquid mirrors: Optical shop tests and contributions to the technology,” Astrophys. J. 393, 829-847 (1992).
[CrossRef]

Hickson, P.

P. Hickson and M. K. Mulrooney, “University of British Columbia-NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35-42 (1998).
[CrossRef]

Jean-Ruel, H.

Laird, P.

P. Laird, E. F. Borra, R. Bergamasco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493-1501 (2004).
[CrossRef]

Marchetti, E.

R. Ragazzoni and E. Marchetti, “A liquid adaptive mirror,” Astron. Astrophys. 283, L17-L19 (1994).

Mulrooney, M. K.

P. Hickson and M. K. Mulrooney, “University of British Columbia-NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35-42 (1998).
[CrossRef]

Parent, J.

Ragazzoni, R.

R. Ragazzoni and E. Marchetti, “A liquid adaptive mirror,” Astron. Astrophys. 283, L17-L19 (1994).

Rioux, M.

M. Rioux, “Miroirs déformables à base de ferrofluides,” Master's thesis (Université Laval, 2006).

Ritcey, A M.

J. Gingras, J-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A M. Ritcey, “Surface films of silver nanoparticles for new liquid mirrors,” Colloids Surf. A 279, 79-86 (2006).
[CrossRef]

Ritcey, A.

D. Brousseau, E. F. Borra, H. Jean-Ruel, J. Parent, and A. Ritcey, “A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations,” Opt. Express 14, 11486-11493 (2006).
[CrossRef] [PubMed]

P. Laird, E. F. Borra, R. Bergamasco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493-1501 (2004).
[CrossRef]

Ritcey, A. M.

L. Faucher, E. F. Borra, and A. M. Ritcey, “Use of thiols as protecting ligands in reflective surface films of silver nanoparticles,” J. Nanosci. Nanotechnol. 8, 3900-3908(2008).
[CrossRef] [PubMed]

Rosensweig, R. E.

R. E. Rosensweig, Ferrohydrodynamics (Dover, 1997).

Russell, T.

R. J. Sica and T. Russell, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. Part I,” J. Atmos. Sci. 56, 1308-1329 (1999).
[CrossRef]

Sargoytchev, S.

Sarrow, C. T.

Sica, R.

Sica, R. J.

R. J. Sica and T. Russell, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. Part I,” J. Atmos. Sci. 56, 1308-1329 (1999).
[CrossRef]

Szapiel, S.

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, and E. Boily, “Liquid mirrors: Optical shop tests and contributions to the technology,” Astrophys. J. 393, 829-847 (1992).
[CrossRef]

Thibault, S.

Tremblay, L. M.

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, and E. Boily, “Liquid mirrors: Optical shop tests and contributions to the technology,” Astrophys. J. 393, 829-847 (1992).
[CrossRef]

Truong, L.

P. Laird, E. F. Borra, R. Bergamasco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493-1501 (2004).
[CrossRef]

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (Academic, 1999).

Vuelban, E. M.

Wuerker, R.

R. Wuerker, “Bistatic liquid mirror telescope lidar alignment,” Opt. Eng. 36, 1421-1424 (1997).
[CrossRef]

Yockell-Lelièvre, H.

J. Gingras, J-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A M. Ritcey, “Surface films of silver nanoparticles for new liquid mirrors,” Colloids Surf. A 279, 79-86 (2006).
[CrossRef]

Appl. Opt. (1)

Astron. Astrophys. (1)

R. Ragazzoni and E. Marchetti, “A liquid adaptive mirror,” Astron. Astrophys. 283, L17-L19 (1994).

Astrophys. J. (2)

R. Cabanac and E. F. Borra, “A search for peculiar objects with the NASA Orbital Debris Observatory 3 m Liquid Mirror Telescope,” Astrophys. J. 509, 309-323 (1998).
[CrossRef]

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, and E. Boily, “Liquid mirrors: Optical shop tests and contributions to the technology,” Astrophys. J. 393, 829-847 (1992).
[CrossRef]

Astrophys. J. Suppl. (1)

P. Hickson and M. K. Mulrooney, “University of British Columbia-NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35-42 (1998).
[CrossRef]

Colloids Surf. A (1)

J. Gingras, J-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A M. Ritcey, “Surface films of silver nanoparticles for new liquid mirrors,” Colloids Surf. A 279, 79-86 (2006).
[CrossRef]

J. Atmos. Sci. (1)

R. J. Sica and T. Russell, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. Part I,” J. Atmos. Sci. 56, 1308-1329 (1999).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

L. Faucher, E. F. Borra, and A. M. Ritcey, “Use of thiols as protecting ligands in reflective surface films of silver nanoparticles,” J. Nanosci. Nanotechnol. 8, 3900-3908(2008).
[CrossRef] [PubMed]

Opt. Eng. (1)

R. Wuerker, “Bistatic liquid mirror telescope lidar alignment,” Opt. Eng. 36, 1421-1424 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

P. Laird, E. F. Borra, R. Bergamasco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493-1501 (2004).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

H. W. Babcock, “Possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Other (3)

R. E. Rosensweig, Ferrohydrodynamics (Dover, 1997).

M. Rioux, “Miroirs déformables à base de ferrofluides,” Master's thesis (Université Laval, 2006).

R. K. Tyson, Principles of Adaptive Optics (Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Example of Bode diagrams for a classical damped harmonic oscillator.

Fig. 2
Fig. 2

Ferrofluid response to two step functions having different amplitudes. (a) Raw measurements for both curves. (b) The dashed curve is scaled to match the second.

Fig. 3
Fig. 3

Amplitude response of a ferrofluid having a viscosity of 6 cP driven by a single actuator using square waves of (a)  1 Hz , (b)  5 Hz , (c)  10 Hz , (d)  20 Hz .

Fig. 4
Fig. 4

Frequency at which a 90 ° phase lag is reached as a function of ferrofluid viscosity. The dashed curve shows a quadratic fit to the results.

Fig. 5
Fig. 5

Effect of adding short pulses at the beginning of the step signals to counter the amplitude loss. When overdriving is used, this ferrofluid of 90 cP viscosity demonstrates a good response with waves of 10 Hz (correction frequency of 20 Hz ). We can also note that the phase lag is negligible at this frequency as opposed to Fig. 3c, in which the viscosity of 6 cP produced a clearly visible phase lag.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

h = ( μ r 1 ) 2 μ r μ 0 ρ g [ | B · n | 2 + μ r | B × n | 2 ] ,
m d 2 z / d t 2 + c d z / d t + k z = 0.

Metrics