Abstract

The body image of the Turin Shroud has not yet been explained by traditional science; so a great interest in a possible mechanism of image formation still exists. We present preliminary results of excimer laser irradiation (wavelength of 308nm) of a raw linen fabric and of a linen cloth. The permanent coloration of both linens is a threshold effect of the laser beam intensity, and it can be achieved only in a narrow range of irradiation parameters, which are strongly dependent on the pulse width and time sequence of laser shots. We also obtained the first direct evidence of latent images impressed on linen that appear in a relatively long period (one year) after laser irradiation that at first did not generate a clear image. The results are compared with the characteristics of the Turin Shroud, reflecting the possibility that a burst of directional ultraviolet radiation may have played a role in the formation of the Shroud image.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Vignon, Le Linceul du Christ (Masson, 1902).
  2. M. Antonacci, The Resurrection of the Shroud (M. Evans, 2000).
  3. G. Fanti and E. Marinelli, La Sindone Rinnovata. Misteri e Certezze (Progetto Editoriale Mariano, 2003); also references at www.dim.unipd.it/fanti/Shroud.htm.
  4. F. Zugibe, The Crucifiction of Jesus, a Forensic Inquiry (M. Evans, 2005).
  5. G. Fanti, B. Schwortz, A. Accetta, J. A. Botella, B. J. Buenaobra, M. Carreira, F. Cheng, F. Crosilla, R. Dinegar, H. Felzmann, B. Haroldsen, P. Iacazio, F. Lattarulo, G. Novelli, J. Marino, A. Malantrucco, P. Maloney, D. Porter, B. Pozzetto, R. Schneider, N. Svensson, T. Wally, A. D. Whanger, and F. Zugibe, “Evidences for testing hypotheses about the body image formation of the Turin Shroud,” presented at The Third Dallas International Conference on the Shroud of Turin, Dallas, Texas, 8-11 September 2005;see www.shroud.com/pdfs/doclist.pdf
  6. J. S. Accetta and J. S. Baumgart,“Infrared reflectance spectroscopy and thermographic investigations of the Shroud of Turin,” Appl. Opt. 19, 1921-1929 (1980).
    [CrossRef] [PubMed]
  7. A. D. Adler and D. Crispino, eds., The Orphaned Manuscript (Effatà, 2002), pp. 11-25.
  8. W. C. Mc Crone,“The Shroud image,” Microscope 48, 79-85(2000).
  9. J. Nickell, Inquest on the Shroud of Turin, New Updated ed. (Prometheus Books, 1997).
  10. J. P. Jackson:, “Is the image on the Shroud due to a process heretofore unknown to modern science?” Shroud Spectrum Int. 34, 3-29 (1990).
  11. R. Rogers and A. Arnoldi, “Scientific method applied to the Shroud of Turin, a review,” www.shroud.com/pdfs/rogers2.pdf
  12. J. P. Jackson, E. J. Jumper, and W. R. Ercoline, “Correlation of image intensity on the Turin Shroud with the 3-D structure of a human body shape,” Appl. Opt. 23, 2244-2270 (1984).
    [CrossRef] [PubMed]
  13. G. Fanti and M. Moroni, “Comparison of luminance between face of Turin Shroud Man and experimental results,” J. Imaging Sci. Technol. 46, 142-154 (2002).
  14. The corona effect is a process by which a current develops from an electrode with a high potential in a neutral fluid, usually air, by ionizing that fluid so as to create a plasma around the electrode. The ions generated eventually pass charge to nearby areas of lower potential or recombine to form neutral gas molecules. Suitable geometry and gradient values allow plasma emission of ultraviolet light during recombination. See, e.g., G. Fanti, F. Lattarulo, and O. Scheuermann, “Body image formation hypotheses based on corona discharge,” presented at The Third Dallas International Conference on the Shroud of Turin, Dallas, Texas, 8-11 September 2005; http://www.dim.unipd.it/fanti/corona.pdf
  15. G. Fanti and R. Maggiolo: “The double superficiality of the frontal image of the Turin Shroud,” J. Opt. A 6, 491-503(2004).
    [CrossRef]
  16. P. Di Lazzaro, G. Schina, R. De Maria, E. Gesi, and A. Cerretini, “Trattamento di superfici tessili con laser ad eccimeri,” Energ. Ambiente Innovazione 4, 29-35 (1995).
  17. P. Di Lazzaro, “Finissaggio di tessuti sintetici con luce ultravioletta,” Innovare 2, 32-36 (2001).
  18. M. Moroni, “Sulla formazione naturale e sulla struttura accidentale dell'immagine sindonica, aloe e mirra, fattori determinanti per una impronta superficiale--verifica sperimentale,” presented at IV Congresso Nazionale di Studi sulla Sindone, Siracusa, 17-18 Ottobre 1987 (1988).
  19. F. Ferrero, F. Testore, C. Tonin, R. Innocenti, “Surface degradation of linen textiles induced by laser treatment: comparison with electron beam and heat source,” AUTEX Res. J. 2, 109-114 (2002); see http://www.autexrj.org/No5/0028.pdf
  20. P. Di Lazzaro, “Hercules, an XeCl laser facility for high-intensity irradiation experiments,” Proc. SPIE 3423, 35-43(1998).
    [CrossRef]
  21. See http://www.frascati.enea.it/fis/lac/excimer/index-exc.html
  22. The presence of the polysaccharides layer that wraps linen fibers of the Turin Shroud yarns is presented in , p. 4, points A3, A4, A7, and A10. This layer was discovered by R. Rogers and communicated to the Shroud Science Group, a 100-expert private group study (G. Fanti, chairman) that discusses the scientific aspects of the Turin Shroud. The presence of this layer was successively confirmed by G. Fanti.
  23. “La Sindone è provocazione all'intelligenza,” (The Turin Shroud is a challenge to the intelligence), said Pope John Paul II visiting Turin on 24 May, 1998, adding that “The Church entrusts scientists the task to go on with research.”

2004

G. Fanti and R. Maggiolo: “The double superficiality of the frontal image of the Turin Shroud,” J. Opt. A 6, 491-503(2004).
[CrossRef]

2002

F. Ferrero, F. Testore, C. Tonin, R. Innocenti, “Surface degradation of linen textiles induced by laser treatment: comparison with electron beam and heat source,” AUTEX Res. J. 2, 109-114 (2002); see http://www.autexrj.org/No5/0028.pdf

G. Fanti and M. Moroni, “Comparison of luminance between face of Turin Shroud Man and experimental results,” J. Imaging Sci. Technol. 46, 142-154 (2002).

2001

P. Di Lazzaro, “Finissaggio di tessuti sintetici con luce ultravioletta,” Innovare 2, 32-36 (2001).

2000

W. C. Mc Crone,“The Shroud image,” Microscope 48, 79-85(2000).

1998

P. Di Lazzaro, “Hercules, an XeCl laser facility for high-intensity irradiation experiments,” Proc. SPIE 3423, 35-43(1998).
[CrossRef]

1995

P. Di Lazzaro, G. Schina, R. De Maria, E. Gesi, and A. Cerretini, “Trattamento di superfici tessili con laser ad eccimeri,” Energ. Ambiente Innovazione 4, 29-35 (1995).

1990

J. P. Jackson:, “Is the image on the Shroud due to a process heretofore unknown to modern science?” Shroud Spectrum Int. 34, 3-29 (1990).

1984

1980

Appl. Opt.

AUTEX Res. J.

F. Ferrero, F. Testore, C. Tonin, R. Innocenti, “Surface degradation of linen textiles induced by laser treatment: comparison with electron beam and heat source,” AUTEX Res. J. 2, 109-114 (2002); see http://www.autexrj.org/No5/0028.pdf

Energ. Ambiente Innovazione

P. Di Lazzaro, G. Schina, R. De Maria, E. Gesi, and A. Cerretini, “Trattamento di superfici tessili con laser ad eccimeri,” Energ. Ambiente Innovazione 4, 29-35 (1995).

Innovare

P. Di Lazzaro, “Finissaggio di tessuti sintetici con luce ultravioletta,” Innovare 2, 32-36 (2001).

J. Imaging Sci. Technol.

G. Fanti and M. Moroni, “Comparison of luminance between face of Turin Shroud Man and experimental results,” J. Imaging Sci. Technol. 46, 142-154 (2002).

J. Opt. A

G. Fanti and R. Maggiolo: “The double superficiality of the frontal image of the Turin Shroud,” J. Opt. A 6, 491-503(2004).
[CrossRef]

Microscope

W. C. Mc Crone,“The Shroud image,” Microscope 48, 79-85(2000).

Proc. SPIE

P. Di Lazzaro, “Hercules, an XeCl laser facility for high-intensity irradiation experiments,” Proc. SPIE 3423, 35-43(1998).
[CrossRef]

Shroud Spectrum Int.

J. P. Jackson:, “Is the image on the Shroud due to a process heretofore unknown to modern science?” Shroud Spectrum Int. 34, 3-29 (1990).

Other

R. Rogers and A. Arnoldi, “Scientific method applied to the Shroud of Turin, a review,” www.shroud.com/pdfs/rogers2.pdf

The corona effect is a process by which a current develops from an electrode with a high potential in a neutral fluid, usually air, by ionizing that fluid so as to create a plasma around the electrode. The ions generated eventually pass charge to nearby areas of lower potential or recombine to form neutral gas molecules. Suitable geometry and gradient values allow plasma emission of ultraviolet light during recombination. See, e.g., G. Fanti, F. Lattarulo, and O. Scheuermann, “Body image formation hypotheses based on corona discharge,” presented at The Third Dallas International Conference on the Shroud of Turin, Dallas, Texas, 8-11 September 2005; http://www.dim.unipd.it/fanti/corona.pdf

See http://www.frascati.enea.it/fis/lac/excimer/index-exc.html

The presence of the polysaccharides layer that wraps linen fibers of the Turin Shroud yarns is presented in , p. 4, points A3, A4, A7, and A10. This layer was discovered by R. Rogers and communicated to the Shroud Science Group, a 100-expert private group study (G. Fanti, chairman) that discusses the scientific aspects of the Turin Shroud. The presence of this layer was successively confirmed by G. Fanti.

“La Sindone è provocazione all'intelligenza,” (The Turin Shroud is a challenge to the intelligence), said Pope John Paul II visiting Turin on 24 May, 1998, adding that “The Church entrusts scientists the task to go on with research.”

J. Nickell, Inquest on the Shroud of Turin, New Updated ed. (Prometheus Books, 1997).

A. D. Adler and D. Crispino, eds., The Orphaned Manuscript (Effatà, 2002), pp. 11-25.

P. Vignon, Le Linceul du Christ (Masson, 1902).

M. Antonacci, The Resurrection of the Shroud (M. Evans, 2000).

G. Fanti and E. Marinelli, La Sindone Rinnovata. Misteri e Certezze (Progetto Editoriale Mariano, 2003); also references at www.dim.unipd.it/fanti/Shroud.htm.

F. Zugibe, The Crucifiction of Jesus, a Forensic Inquiry (M. Evans, 2005).

G. Fanti, B. Schwortz, A. Accetta, J. A. Botella, B. J. Buenaobra, M. Carreira, F. Cheng, F. Crosilla, R. Dinegar, H. Felzmann, B. Haroldsen, P. Iacazio, F. Lattarulo, G. Novelli, J. Marino, A. Malantrucco, P. Maloney, D. Porter, B. Pozzetto, R. Schneider, N. Svensson, T. Wally, A. D. Whanger, and F. Zugibe, “Evidences for testing hypotheses about the body image formation of the Turin Shroud,” presented at The Third Dallas International Conference on the Shroud of Turin, Dallas, Texas, 8-11 September 2005;see www.shroud.com/pdfs/doclist.pdf

M. Moroni, “Sulla formazione naturale e sulla struttura accidentale dell'immagine sindonica, aloe e mirra, fattori determinanti per una impronta superficiale--verifica sperimentale,” presented at IV Congresso Nazionale di Studi sulla Sindone, Siracusa, 17-18 Ottobre 1987 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup of linens’ irradiation. BS, beam splitter; = 1 m focal length lens; L, linen; PD, photodiode; OS socilloscope TDS520; PC, computer.

Fig. 2
Fig. 2

Sugared linen F irradiated by ten pulses of the laser Hercules (energy density 0.44 J / cm 2 / pulse and intensity 3.5 MW / cm 2 / pulse ). Image size, 1.25 mm .

Fig. 3
Fig. 3

Linen F irradiated by 100 LPX laser pulses (energy density 0.46 J / cm 2 / pulse and intensity 16.1 MW / cm 2 / pulse ); see the second row of Table 3. Image size, 1.25 mm .

Fig. 4
Fig. 4

Linen B irradiated by 100 LPX laser pulses (energy density 0.46 J / cm 2 / pulse and intensity 16.1 MW / cm 2 / pulse ); see the second row of Table 4. Image size, 0.25 mm .

Fig. 5
Fig. 5

Linen irradiation results for different light intensities using the lasers LPX (pulse width 33 ns ) and Hercules (pulse width 120 ns ) lasers. Diamond, nonsugared linen, square, sugared linen; M, sharp brown spot, showing morphologic changes; ML, brown spot, without morphologic changes; D, damaged yarns; S, ablated yarns; N, no visible results; C, some burnt-sugar-like yarns.

Fig. 6
Fig. 6

Histogram of the results of Tables 3, 4. Vertical, coloration effect on linens (arbitrary units). Horizontal, number of shots and repetition rate. B, linen B; F, linen F. Vertical lines divide the histogram into three regions: low laser intensity (left) medium intensity (middle), and high intensity (right). The horizontal dashed line corresponds to the boundary between coloration and damage.

Fig. 7
Fig. 7

Linen B irradiated in the conditions of the fourth row of Table 4. (a) Left: irradiated part. Right: irradiated part heated 15 s by an iron at 190 ° C . The heating process (which simulates aging) colored the region corresponding to the laser spot. (b) The same samples of (a) one year later.

Fig. 8
Fig. 8

Single yarn of linen F (above) and linen B (below) after irradiation.

Fig. 9
Fig. 9

Cross section of a colored yarn of linen B let into the paraffin wax.

Fig. 10
Fig. 10

In the middle is a partly colored fiber of linen B in oil 1.515 between crossed polarizers to detect stress characteristics. On the left of the fiber is the nonirradiated region, enlarged in the inset below. On the right is the irradiated region, enlarged in the inset above.

Tables (4)

Tables Icon

Table 1 Parameter Values for Sugared Linen F Irradiated by the LPX-305 Laser and Corresponding Macroscopic Results

Tables Icon

Table 2 Parameter Values for Sugared Linen B Irradiated by the LPX-305 Laser and Corresponding Macroscopic Results

Tables Icon

Table 3 Parameter Values for Linen F Irradiated by the LPX-305 Laser and Corresponding Macroscopic Results

Tables Icon

Table 4 Parameter Values for Linen B Irradiated by the LPX-305 Laser and Corresponding Macroscopic Results

Metrics