Abstract

We demonstrate methane sensing based on Fourier transform infrared spectroscopy using a hollow-core photonic bandgap fiber guiding in the mid-infrared and idler pulses from a femtosecond optical parametric oscillator. Transmission measurements are presented for several fibers, and sensing is demonstrated using a fiber whose bandgap overlaps the methane fundamental absorption lines. The gas filling process of the air core is described, and qualitative methane concentrations measurements to 1000ppm (parts in 106) are reported. Operation down to 50ppm based on our current experiment is predicted.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. H. Visser and R. E. Soltis, “Automotive exhaust gas sensing systems,” IEEE Trans. Instrum. Meas. 50, 1543-1550 (2001).
    [CrossRef]
  2. S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, “Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications,” Spectrochim. Acta Part A 60, 3259-3268 (2004).
    [CrossRef]
  3. J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85, 323-328 (2006).
    [CrossRef]
  4. G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A Pure Appl. Opt. 5, S140-S145 (2003).
    [CrossRef]
  5. H. K. Jones and J. Elgy, “Remote sensing to assess landfill gas migration,” Waste Manage. Res. 12, 327-337 (1994).
  6. U. Willer, D. Sheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, “Fiber-optic evanescent-field laser sensor for in-situ gas diagnostics,” Spectrochim. Acta Part A 58, 2427-2432(2002).
    [CrossRef]
  7. G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B 38-39, 42-47 (1997).
    [CrossRef]
  8. F. A. Muhammad, H. S. Al-Raweshidy, and J. M. Senior, “Compensation for surface contamination with D-fibre sensor,” Sensor Actuators B 40, 59-63 (1997).
    [CrossRef]
  9. C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, “Hollow-waveguide gas sensing with room-temperature quantum cascade lasers,” IEE Proc. Optoelectron. 150, 306-309 (2003).
    [CrossRef]
  10. G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sensor Actuators B 51, 227-232 (1998).
    [CrossRef]
  11. J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using mid-infrared optical fibre based sensor,” Sensor Actuators A 136, 104-110 (2007).
    [CrossRef]
  12. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8-9 (2002).
    [CrossRef]
  13. J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov, “Very short wavelength (λ=3.1-3.3 μm) quantum cascade lasers,” Appl. Phys. Lett. 89 (19), 191115 (2006).
    [CrossRef]
  14. D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” Chalcogenide Lett. 1 (1), 11-15 (2004).
  15. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607-613 (1984).
    [CrossRef]
  16. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873-883(2002).
    [CrossRef]
  17. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  18. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
    [CrossRef] [PubMed]
  19. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  20. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236-244 (2005).
    [CrossRef] [PubMed]
  21. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  22. N. Gayraud, J. M. Stone, W. N. MacPherson, J. D. Shephard, R. R. J. Maier, J. C. Knight, D. P. Hand, and J. D. C. Jones, “Mid infra-red gas sensing using a hollow-core photonic bandgap fibre,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThA5.
  23. J. D. Shephard, W. N. MacPherson, R. R. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13, 7139-7144(2005).
    [CrossRef] [PubMed]
  24. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080-4087 (2004).
    [CrossRef] [PubMed]
  25. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator,” Appl. Phys. Lett. 85, 3366-3368(2004).
    [CrossRef]
  26. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A Pure Appl. Opt. 7, S408-S414 (2005).
    [CrossRef]
  27. P. St. J. Russel, “Photonic crystal fibers,” Science 299, 358-362 (2003).
    [CrossRef]
  28. F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Philos. Trans. R. Soc. London A 364, 3439-3462 (2006).
    [CrossRef]
  29. K. Saitoh, N. A. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12 (3), 394-400 (2004).
    [CrossRef] [PubMed]
  30. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
    [CrossRef]
  31. R. A. Serway, Physics for Scientists and Engineers (Holt-Saunders International, 1982).
  32. J. Crank, The Mathematics of Diffusion (Clarendon, 1975).
  33. D. R. Lide, Handbook of Chemistry and Physics, 74th ed. (CRC Press, 1993-1994).
  34. J. P. Carvalho, K. Magalhães, O. V. Ivanov, O. Frazão, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Evaluation of coupling losses in hollow-core photonic crystal fibres,” Proc. SPIE 6619, 66191V (2007).
  35. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15, 6690-6695(2007).
    [CrossRef] [PubMed]
  36. R. G. Livesey, “Flow of gases through tubes and orifices,” in Foundations of Vacuum Science and Technology, J. M. Lafferty, ed. (Wiley, 1998), pp. 81-140.
  37. Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, and H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photonic Technol. Lett. 3, 86-87 (1991).
    [CrossRef]
  38. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236-244 (2005).
    [CrossRef] [PubMed]

2007

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using mid-infrared optical fibre based sensor,” Sensor Actuators A 136, 104-110 (2007).
[CrossRef]

J. P. Carvalho, K. Magalhães, O. V. Ivanov, O. Frazão, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Evaluation of coupling losses in hollow-core photonic crystal fibres,” Proc. SPIE 6619, 66191V (2007).

C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15, 6690-6695(2007).
[CrossRef] [PubMed]

2006

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006).
[CrossRef]

F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Philos. Trans. R. Soc. London A 364, 3439-3462 (2006).
[CrossRef]

J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov, “Very short wavelength (λ=3.1-3.3 μm) quantum cascade lasers,” Appl. Phys. Lett. 89 (19), 191115 (2006).
[CrossRef]

J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85, 323-328 (2006).
[CrossRef]

2005

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A Pure Appl. Opt. 7, S408-S414 (2005).
[CrossRef]

J. D. Shephard, W. N. MacPherson, R. R. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13, 7139-7144(2005).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236-244 (2005).
[CrossRef] [PubMed]

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236-244 (2005).
[CrossRef] [PubMed]

2004

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080-4087 (2004).
[CrossRef] [PubMed]

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator,” Appl. Phys. Lett. 85, 3366-3368(2004).
[CrossRef]

K. Saitoh, N. A. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12 (3), 394-400 (2004).
[CrossRef] [PubMed]

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, “Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications,” Spectrochim. Acta Part A 60, 3259-3268 (2004).
[CrossRef]

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” Chalcogenide Lett. 1 (1), 11-15 (2004).

2003

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A Pure Appl. Opt. 5, S140-S145 (2003).
[CrossRef]

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, “Hollow-waveguide gas sensing with room-temperature quantum cascade lasers,” IEE Proc. Optoelectron. 150, 306-309 (2003).
[CrossRef]

P. St. J. Russel, “Photonic crystal fibers,” Science 299, 358-362 (2003).
[CrossRef]

2002

U. Willer, D. Sheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, “Fiber-optic evanescent-field laser sensor for in-situ gas diagnostics,” Spectrochim. Acta Part A 58, 2427-2432(2002).
[CrossRef]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873-883(2002).
[CrossRef]

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8-9 (2002).
[CrossRef]

2001

J. H. Visser and R. E. Soltis, “Automotive exhaust gas sensing systems,” IEEE Trans. Instrum. Meas. 50, 1543-1550 (2001).
[CrossRef]

1999

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef] [PubMed]

1998

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sensor Actuators B 51, 227-232 (1998).
[CrossRef]

1997

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B 38-39, 42-47 (1997).
[CrossRef]

F. A. Muhammad, H. S. Al-Raweshidy, and J. M. Senior, “Compensation for surface contamination with D-fibre sensor,” Sensor Actuators B 40, 59-63 (1997).
[CrossRef]

1994

H. K. Jones and J. Elgy, “Remote sensing to assess landfill gas migration,” Waste Manage. Res. 12, 327-337 (1994).

1991

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, and H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photonic Technol. Lett. 3, 86-87 (1991).
[CrossRef]

1984

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

Appl. Phys. B

J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85, 323-328 (2006).
[CrossRef]

Appl. Phys. Lett.

J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov, “Very short wavelength (λ=3.1-3.3 μm) quantum cascade lasers,” Appl. Phys. Lett. 89 (19), 191115 (2006).
[CrossRef]

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator,” Appl. Phys. Lett. 85, 3366-3368(2004).
[CrossRef]

C. R. Chim.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873-883(2002).
[CrossRef]

Chalcogenide Lett.

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” Chalcogenide Lett. 1 (1), 11-15 (2004).

IEE Proc. Optoelectron.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, “Hollow-waveguide gas sensing with room-temperature quantum cascade lasers,” IEE Proc. Optoelectron. 150, 306-309 (2003).
[CrossRef]

IEEE Photonic Technol. Lett.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, and H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photonic Technol. Lett. 3, 86-87 (1991).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. H. Visser and R. E. Soltis, “Automotive exhaust gas sensing systems,” IEEE Trans. Instrum. Meas. 50, 1543-1550 (2001).
[CrossRef]

J. Lightwave Technol.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006).
[CrossRef]

J. Opt. A Pure Appl. Opt.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A Pure Appl. Opt. 7, S408-S414 (2005).
[CrossRef]

G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A Pure Appl. Opt. 5, S140-S145 (2003).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Nature

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Opt. Eng.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8-9 (2002).
[CrossRef]

Opt. Express

Philos. Trans. R. Soc. London A

F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Philos. Trans. R. Soc. London A 364, 3439-3462 (2006).
[CrossRef]

Science

P. St. J. Russel, “Photonic crystal fibers,” Science 299, 358-362 (2003).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef] [PubMed]

Sens. Actuators B

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B 38-39, 42-47 (1997).
[CrossRef]

Sensor Actuators A

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using mid-infrared optical fibre based sensor,” Sensor Actuators A 136, 104-110 (2007).
[CrossRef]

Sensor Actuators B

F. A. Muhammad, H. S. Al-Raweshidy, and J. M. Senior, “Compensation for surface contamination with D-fibre sensor,” Sensor Actuators B 40, 59-63 (1997).
[CrossRef]

G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sensor Actuators B 51, 227-232 (1998).
[CrossRef]

Spectrochim. Acta Part A

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, “Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications,” Spectrochim. Acta Part A 60, 3259-3268 (2004).
[CrossRef]

U. Willer, D. Sheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, “Fiber-optic evanescent-field laser sensor for in-situ gas diagnostics,” Spectrochim. Acta Part A 58, 2427-2432(2002).
[CrossRef]

Waste Manage. Res.

H. K. Jones and J. Elgy, “Remote sensing to assess landfill gas migration,” Waste Manage. Res. 12, 327-337 (1994).

Other

N. Gayraud, J. M. Stone, W. N. MacPherson, J. D. Shephard, R. R. J. Maier, J. C. Knight, D. P. Hand, and J. D. C. Jones, “Mid infra-red gas sensing using a hollow-core photonic bandgap fibre,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThA5.

R. G. Livesey, “Flow of gases through tubes and orifices,” in Foundations of Vacuum Science and Technology, J. M. Lafferty, ed. (Wiley, 1998), pp. 81-140.

R. A. Serway, Physics for Scientists and Engineers (Holt-Saunders International, 1982).

J. Crank, The Mathematics of Diffusion (Clarendon, 1975).

D. R. Lide, Handbook of Chemistry and Physics, 74th ed. (CRC Press, 1993-1994).

J. P. Carvalho, K. Magalhães, O. V. Ivanov, O. Frazão, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Evaluation of coupling losses in hollow-core photonic crystal fibres,” Proc. SPIE 6619, 66191V (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Scanning electron micrograph of a 19-cell hollow-core PBF.

Fig. 2
Fig. 2

Experimental configuration for transmission measurements and gas sensing.

Fig. 3
Fig. 3

Measured OPO tuning range: by changing the cavity length, the idler wavelength can be modified to span the range between 2.9 and 3.4 μm .

Fig. 4
Fig. 4

Measured transmission spectra of fibers a–f.

Fig. 5
Fig. 5

Spectral overlap between methane fundamental absorption lines (solid lines—from [30]) and fiber b bandgap (dotted curves).

Fig. 6
Fig. 6

Modeled evolution of methane diffusion time within a hollow-core fiber as a function of the fiber length based on Eq. (1b).

Fig. 7
Fig. 7

Normalized signal coupled from one fiber to another as a function of the gap (the crosses represent the experimental measurements, and the curve is the modeled results).

Fig. 8
Fig. 8

Schematic of the alignment of two PBFs separated by an air gap allowing a decrease in the filling time of the air core. The optimum gap length is obtained when the surface corresponding to the gap (in dashed) is equal to core cross section area.

Fig. 9
Fig. 9

Gas cell for sensing measurements.

Fig. 10
Fig. 10

Gas pressure at each end of an 80 cm long fiber dur ing the filling cycle. Sensor 2 was located at the same fiber end as the vacuum pump and the gas cylinder, while sensor 1 was at the other end.

Fig. 11
Fig. 11

Measured (solid curves) and theoretical (dash curves) absorption lines of methane for concentrations of a, 5%; b, 1%; c, 0.5%; and d, 0.1% using fiber b.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

C A ( t ) = 1 L 0 L C ( x , t ) d x ,
C A ( t ) = C 0 ( 1 ( 8 π 2 ) j = 1 , 3 , 5 1 j 2 exp { ( j π L ) 2 D t } ) ,
C A ( t D ) = 90 % C 0 .
t D = 9640 s 2 h 40 min.
S gap = 2 π r d opt = 2 π r 2 = 2 S core ,
d opt = r = 20 μm .
P ( x , t ) = P e + 4 π ( P 0 P e ) n = 0 exp { ( 2 n + 1 ) 2 π 2 4 C V t } cos { ( 2 n + 1 ) π 2 x l } ,
P ( x = l , t fill ) = 95 % × P e
t fill 160 s = 2 min 40 s .

Metrics