Abstract

An optical decoding technique is proposed for a spectral-amplitude-coding-optical code division multiple access, namely, the and subtraction technique. The theory is being elaborated and experimental results have been done by comparing a double-weight code against the existing code, Hadamard. We have proved that the and subtraction technique gives better bit error rate performance than the conventional complementary subtraction technique against the received power level.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. Xu, G. I. Baby, and V. P. R. Prucnal, “Multiple access interference (MAI) noise reduction in a 2D optical CDMA system using ultrafast optical thresholding,” in Proceedings of the 17th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, (IEEE, 2004), pp. 591-592.
  2. J. F. Huang and C.-C. Yang, “Reductions of multiple-access interference in fiber-grating-based optical CDMA network,” IEEE Trans. Commun. , 50, 1680-1687 (2002).
    [CrossRef]
  3. L. Nguyen, B. Aazhang, and J. F. Young, “All-optical CDMA with bipolar codes,” Electron. Lett. 31, 469-470 (1995).
    [CrossRef]
  4. E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun. 46, 1176-1185 (1998).
    [CrossRef]
  5. R. M. H. Yim, J. Bajcsy, and L. R. Chen, “A new family of 2-D wavelength-time codes for optical CDMA with differential detection,” IEEE Photon. Technol. Lett. 15, 165-167 (2003).
    [CrossRef]
  6. I. B. Djordjevic and B. Vasic, “Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems,” J. Lightwave Technol. 21, 1869-1875 (2003).
    [CrossRef]
  7. D. Zaccarin, M. Kavehrad, “Performance evaluation of optical CDMA systems using non-coherent detection and bipolar codes,” J. Lightwave Technol. 12, 96-105 (1994).
    [CrossRef]
  8. Z. Wei and H. Ghafouri-Shiraz, “Code for spectral amplitude-coding optical CDMA systems,” J. Lightwave Technol. 20, 1284-1291 (2002).
    [CrossRef]
  9. S. A. Aljunid, M. Ismail, A. R. Ramli, B. M. Ali, and M. K. Abdullah, “A new family of optical code sequences for spectral amplitude-coding optical CDMA systems,” IEEE photon. Technol. Lett. 16, 2383-2385, (2004).
    [CrossRef]
  10. C. F. Lam, T. K. T. Dennis, and M. C. Wu, “Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoding,” IEEE Photon. Technol. Lett. 10, 1504-1506 (1998).
    [CrossRef]

2004

S. A. Aljunid, M. Ismail, A. R. Ramli, B. M. Ali, and M. K. Abdullah, “A new family of optical code sequences for spectral amplitude-coding optical CDMA systems,” IEEE photon. Technol. Lett. 16, 2383-2385, (2004).
[CrossRef]

2003

R. M. H. Yim, J. Bajcsy, and L. R. Chen, “A new family of 2-D wavelength-time codes for optical CDMA with differential detection,” IEEE Photon. Technol. Lett. 15, 165-167 (2003).
[CrossRef]

I. B. Djordjevic and B. Vasic, “Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems,” J. Lightwave Technol. 21, 1869-1875 (2003).
[CrossRef]

2002

J. F. Huang and C.-C. Yang, “Reductions of multiple-access interference in fiber-grating-based optical CDMA network,” IEEE Trans. Commun. , 50, 1680-1687 (2002).
[CrossRef]

Z. Wei and H. Ghafouri-Shiraz, “Code for spectral amplitude-coding optical CDMA systems,” J. Lightwave Technol. 20, 1284-1291 (2002).
[CrossRef]

1998

E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun. 46, 1176-1185 (1998).
[CrossRef]

C. F. Lam, T. K. T. Dennis, and M. C. Wu, “Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoding,” IEEE Photon. Technol. Lett. 10, 1504-1506 (1998).
[CrossRef]

1995

L. Nguyen, B. Aazhang, and J. F. Young, “All-optical CDMA with bipolar codes,” Electron. Lett. 31, 469-470 (1995).
[CrossRef]

1994

D. Zaccarin, M. Kavehrad, “Performance evaluation of optical CDMA systems using non-coherent detection and bipolar codes,” J. Lightwave Technol. 12, 96-105 (1994).
[CrossRef]

Electron. Lett.

L. Nguyen, B. Aazhang, and J. F. Young, “All-optical CDMA with bipolar codes,” Electron. Lett. 31, 469-470 (1995).
[CrossRef]

IEEE photon. Technol. Lett.

S. A. Aljunid, M. Ismail, A. R. Ramli, B. M. Ali, and M. K. Abdullah, “A new family of optical code sequences for spectral amplitude-coding optical CDMA systems,” IEEE photon. Technol. Lett. 16, 2383-2385, (2004).
[CrossRef]

C. F. Lam, T. K. T. Dennis, and M. C. Wu, “Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoding,” IEEE Photon. Technol. Lett. 10, 1504-1506 (1998).
[CrossRef]

R. M. H. Yim, J. Bajcsy, and L. R. Chen, “A new family of 2-D wavelength-time codes for optical CDMA with differential detection,” IEEE Photon. Technol. Lett. 15, 165-167 (2003).
[CrossRef]

IEEE Trans. Commun.

E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun. 46, 1176-1185 (1998).
[CrossRef]

J. F. Huang and C.-C. Yang, “Reductions of multiple-access interference in fiber-grating-based optical CDMA network,” IEEE Trans. Commun. , 50, 1680-1687 (2002).
[CrossRef]

J. Lightwave Technol.

Other

L. Xu, G. I. Baby, and V. P. R. Prucnal, “Multiple access interference (MAI) noise reduction in a 2D optical CDMA system using ultrafast optical thresholding,” in Proceedings of the 17th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, (IEEE, 2004), pp. 591-592.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Implementation of the AND subtraction technique.

Fig. 2
Fig. 2

SNR versus number of users for DW and Hadamard codes.

Fig. 3
Fig. 3

Experimental setup for OCDM system using the DW code.

Fig. 4
Fig. 4

Spectrum for output encoder code 1 (011).

Fig. 5
Fig. 5

Spectrum for output encoder code 2 (010).

Fig. 6
Fig. 6

Combined spectrum inside the fiber.

Fig. 7
Fig. 7

Eye pattern before subtraction.

Fig. 8
Fig. 8

Eye pattern after subtraction.

Fig. 9
Fig. 9

BER versus received power at a bit rate of 2.5 Gbps .

Fig. 10
Fig. 10

BER versus received power for Hadamard and DW Codes at a bit rate of 622 Mbps .

Tables (1)

Tables Icon

Table 1 Example of AND Subtraction Techniques for DW and Hadamard Codes

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Z AND = θ X Y ( k ) θ ( X & Y ) Y ( k ) = 0
SNR = 2 ( W λ 1 ) Δ v B K [ K 2 + W λ 2 ] ,

Metrics