Abstract

Yb-doped fibers are widely used in laser applications requiring high average output powers and high-peak-power pulse amplification. Photodarkening (PD) is recognized as one limiting factor in these fibers when pumped with high-intensity radiation. We describe an approach for performing quantitative PD studies of fibers, and we present measurements of the rate of PD in Yb-doped single-mode fibers with varying inversion levels. The method is applicable to large-mode-area fibers. We observed a seventh- order dependence of the PD rate on the excited-state Yb concentration for two different fibers; this result implies that PD of a Yb-doped fiber source fabricated using a particular fiber will be strongly dependent on the configuration of the device.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207-217 (2001).
    [CrossRef]
  2. C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, “810 W continuous-wave and single transverse-mode fibre laser using 20 μm core Yb-doped double-clad fibre,” Electron. Lett. 40, 1471-1472 (2004).
    [CrossRef]
  3. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049-1056 (1997).
    [CrossRef]
  4. D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210, 393-398 (2002).
    [CrossRef]
  5. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 3495-3497 (2007).
    [CrossRef] [PubMed]
  6. K. C. Hou, M. Y. Cheng, D. Engin, R. Changkakoti, P. Mamidipudi, and A. Galvanuaskas,“Multi MW peak power scaling of single-mode pulses using 80 μm core Yb-doped LMA Fibers,” in eedings of Proc. DEPS, 20th SSDLTR Technical Digest, Fiber 1-2 (2006).
  7. S. Maryashin, A. Unt, and V. Gapontsev,“10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE-Int. Soc. Opt. Eng. 6102, 61020O (2006).
  8. S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P. Turner, and I. Crowe, “Power scaling of high-power fiber lasers for micromachining and materials processing applications,” Proc. SPIE 6102, 61021P (2006).
    [CrossRef]
  9. P. E. Schrader, R. L. Farrow, D. A. V. Kliner, J-P. Fève, and N. Landru, “Fiber-based laser with tunable repetition rate, fixed pulse duration, and multiple wavelength output,” Proc. SPIE 6453, 64530D (2007).
    [CrossRef]
  10. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14, 11539-11544 (2006).
    [CrossRef] [PubMed]
  11. J. J. Koponen, M. J. Söderlund, S. K. Tammela, and H. Po, “Photodarkening in ytterbium-doped silica fibers,” Proc. SPIE 5990, 599008 (2005).
    [CrossRef]
  12. M. M. Broer, D. M. Krol, and D. J. DiGiovanni, “Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber,” Opt. Lett. 18, 799-801 (1993).
    [CrossRef] [PubMed]
  13. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375-378 (1997).
    [CrossRef]
  14. G. R. Atkins, and A. L. G. Carter, “Photodarkening in Tb3+-doped phosphosilicate and germanosilicate optical fibers,” Opt. Lett. 19, 874-876 (1994).
    [CrossRef] [PubMed]
  15. M. M. Broer, R. L. Cone, and J. R. Sompson, “Ultraviolet-induced distributed-feedback gratings in Ce3+-doped silica optical fibers,” Opt. Lett. 16, 1391-1393 (1991).
    [CrossRef] [PubMed]
  16. E. G. Behrens and R. C. Powell, “Characteristics of laser-induced gratings in Pr3+- and Eu3+-doped silicate glasses,” J. Opt. Soc. Am. B 7, 1437-1444 (1990).
    [CrossRef]
  17. L. B. Glebov, “Linear and nonlinear photoionization of silicate glasses,” Glass Sci. Technol. 75 (C2), 1-6 (2002).
  18. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32, 1626-1628 (2007).
    [CrossRef] [PubMed]
  19. M. Engholm, L. Norin, and D. Åberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32, 3352-3354 (2007).
    [CrossRef] [PubMed]
  20. A. D. Guzman Chávez, A. V. Kir'yanov, Yu. O. Barmenkov, and N. N. Il'ichev, “Reversible photo-darkening and resonant photobleaching of Ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett. 4, 734-739 (2007).
    [CrossRef]
  21. T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping,” in Proceedings of Conference of Lasers and Electro-Optics, CLEO Technical Digest (OSA, 2006), paper OThC5.
  22. B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J-P. Martin, and J-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE 6453, 64530H(2007).
    [CrossRef]
  23. A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in Proceedings of Conference of Lasers and Electro-Optics/Europe, CLEO/Europe Technical Digest (OSA, 2007), paper CJ3-1-THU.
  24. J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers,” in Proceedings of Conference of Lasers and Electro-Optics, CLEO Technical Digest (OSA, 2006), paper CTuQ5.
  25. I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15, 1606-1611 (2007).
    [CrossRef] [PubMed]
  26. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15, 14838-14843 (2007).
    [CrossRef] [PubMed]
  27. J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, and J. P. Koplow, “Photodarkening measurements in large mode area fibers,” Proc. SPIE 6453, 64531E (2007).
    [CrossRef]
  28. D. L. Griscom, “The electronic structure of SiO2: review of recent spectroscopic and theoretical advances,” J. Non-Cryst. Solids 24, 155-234 (1977).
    [CrossRef]
  29. Z. Burshtein, Y. Kalisky, S. Z. Levy, P. Le Boulanger, and S. Rotman, “Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses,” IEEE J. Quantum Electron. 36, 1000-1007 (2000).
    [CrossRef]
  30. A. V. Kir'yanov, Y. O. Barmenkov, I. L. Martinez, A. S. Kurkov, and E. M. Dianov, “Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ=980 nm with a regard to the Ytterbium ion-pairs' effect,” Opt. Express 14, 3981-3992 (2006).
    [CrossRef] [PubMed]

2007

P. E. Schrader, R. L. Farrow, D. A. V. Kliner, J-P. Fève, and N. Landru, “Fiber-based laser with tunable repetition rate, fixed pulse duration, and multiple wavelength output,” Proc. SPIE 6453, 64530D (2007).
[CrossRef]

A. D. Guzman Chávez, A. V. Kir'yanov, Yu. O. Barmenkov, and N. N. Il'ichev, “Reversible photo-darkening and resonant photobleaching of Ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett. 4, 734-739 (2007).
[CrossRef]

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J-P. Martin, and J-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE 6453, 64530H(2007).
[CrossRef]

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, and J. P. Koplow, “Photodarkening measurements in large mode area fibers,” Proc. SPIE 6453, 64531E (2007).
[CrossRef]

I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15, 1606-1611 (2007).
[CrossRef] [PubMed]

S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32, 1626-1628 (2007).
[CrossRef] [PubMed]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15, 14838-14843 (2007).
[CrossRef] [PubMed]

M. Engholm, L. Norin, and D. Åberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32, 3352-3354 (2007).
[CrossRef] [PubMed]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 3495-3497 (2007).
[CrossRef] [PubMed]

2006

A. V. Kir'yanov, Y. O. Barmenkov, I. L. Martinez, A. S. Kurkov, and E. M. Dianov, “Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ=980 nm with a regard to the Ytterbium ion-pairs' effect,” Opt. Express 14, 3981-3992 (2006).
[CrossRef] [PubMed]

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14, 11539-11544 (2006).
[CrossRef] [PubMed]

S. Maryashin, A. Unt, and V. Gapontsev,“10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE-Int. Soc. Opt. Eng. 6102, 61020O (2006).

S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P. Turner, and I. Crowe, “Power scaling of high-power fiber lasers for micromachining and materials processing applications,” Proc. SPIE 6102, 61021P (2006).
[CrossRef]

2005

J. J. Koponen, M. J. Söderlund, S. K. Tammela, and H. Po, “Photodarkening in ytterbium-doped silica fibers,” Proc. SPIE 5990, 599008 (2005).
[CrossRef]

2004

C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, “810 W continuous-wave and single transverse-mode fibre laser using 20 μm core Yb-doped double-clad fibre,” Electron. Lett. 40, 1471-1472 (2004).
[CrossRef]

2002

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210, 393-398 (2002).
[CrossRef]

L. B. Glebov, “Linear and nonlinear photoionization of silicate glasses,” Glass Sci. Technol. 75 (C2), 1-6 (2002).

2001

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207-217 (2001).
[CrossRef]

2000

Z. Burshtein, Y. Kalisky, S. Z. Levy, P. Le Boulanger, and S. Rotman, “Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses,” IEEE J. Quantum Electron. 36, 1000-1007 (2000).
[CrossRef]

1997

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375-378 (1997).
[CrossRef]

1994

1993

1991

1990

1977

D. L. Griscom, “The electronic structure of SiO2: review of recent spectroscopic and theoretical advances,” J. Non-Cryst. Solids 24, 155-234 (1977).
[CrossRef]

Electron. Lett.

C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, “810 W continuous-wave and single transverse-mode fibre laser using 20 μm core Yb-doped double-clad fibre,” Electron. Lett. 40, 1471-1472 (2004).
[CrossRef]

Glass Sci. Technol.

L. B. Glebov, “Linear and nonlinear photoionization of silicate glasses,” Glass Sci. Technol. 75 (C2), 1-6 (2002).

IEEE J. Quantum Electron.

Z. Burshtein, Y. Kalisky, S. Z. Levy, P. Le Boulanger, and S. Rotman, “Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses,” IEEE J. Quantum Electron. 36, 1000-1007 (2000).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207-217 (2001).
[CrossRef]

J. Non-Cryst. Solids

D. L. Griscom, “The electronic structure of SiO2: review of recent spectroscopic and theoretical advances,” J. Non-Cryst. Solids 24, 155-234 (1977).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys. Lett.

A. D. Guzman Chávez, A. V. Kir'yanov, Yu. O. Barmenkov, and N. N. Il'ichev, “Reversible photo-darkening and resonant photobleaching of Ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett. 4, 734-739 (2007).
[CrossRef]

Opt. Commun.

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210, 393-398 (2002).
[CrossRef]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375-378 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J-P. Martin, and J-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE 6453, 64530H(2007).
[CrossRef]

S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P. Turner, and I. Crowe, “Power scaling of high-power fiber lasers for micromachining and materials processing applications,” Proc. SPIE 6102, 61021P (2006).
[CrossRef]

P. E. Schrader, R. L. Farrow, D. A. V. Kliner, J-P. Fève, and N. Landru, “Fiber-based laser with tunable repetition rate, fixed pulse duration, and multiple wavelength output,” Proc. SPIE 6453, 64530D (2007).
[CrossRef]

J. J. Koponen, M. J. Söderlund, S. K. Tammela, and H. Po, “Photodarkening in ytterbium-doped silica fibers,” Proc. SPIE 5990, 599008 (2005).
[CrossRef]

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, and J. P. Koplow, “Photodarkening measurements in large mode area fibers,” Proc. SPIE 6453, 64531E (2007).
[CrossRef]

Proc. SPIE-Int. Soc. Opt. Eng.

S. Maryashin, A. Unt, and V. Gapontsev,“10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE-Int. Soc. Opt. Eng. 6102, 61020O (2006).

Other

K. C. Hou, M. Y. Cheng, D. Engin, R. Changkakoti, P. Mamidipudi, and A. Galvanuaskas,“Multi MW peak power scaling of single-mode pulses using 80 μm core Yb-doped LMA Fibers,” in eedings of Proc. DEPS, 20th SSDLTR Technical Digest, Fiber 1-2 (2006).

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in Proceedings of Conference of Lasers and Electro-Optics/Europe, CLEO/Europe Technical Digest (OSA, 2007), paper CJ3-1-THU.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers,” in Proceedings of Conference of Lasers and Electro-Optics, CLEO Technical Digest (OSA, 2006), paper CTuQ5.

T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping,” in Proceedings of Conference of Lasers and Electro-Optics, CLEO Technical Digest (OSA, 2006), paper OThC5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup used to measure the PD rate in the Yb-doped core of the sample fiber. A longitudinally and transversely constant inversion was achieved with a short (optically thin) sample length, and the inversion level was tuned by varying the pump power. He–Ne transmission through the core of the fiber was measured as a function of time as the fiber photodarkened.

Fig. 2
Fig. 2

(a) Longitudinal inversion profile of short ( 10 cm ) sample fibers cladding pumped using different pump powers. The induced inversion profile is spatially very flat and tunable over a wide range. (b) Simulated average inversion of fiber samples as a function of pump power. Error bars represent two standard deviations.

Fig. 3
Fig. 3

Normalized transmittance at 633 nm as a function of time for (a) Fiber #1 and (b) Fiber #2. The upper graphs show the full temporal range, and the lower graphs show the early times. Bold dotted curves are the measured data and thin solid curves are the fit data. Each curve represents a different inversion level, and the corresponding inversion is shown next to each curve.

Fig. 4
Fig. 4

Fast and slow PD rate constants of (a) fiber 1 and (b) fiber 2 as a function of inversion. The error bars represent two standard deviations. The line is a weighted least-squares fit (uncertainty denotes two standard deviations in the best-fit slope).

Fig. 5
Fig. 5

PD rate constants of the two fibers as a function of the [ Yb * ] ( inversion × [ Yb ] ). The error bars represent two standard deviations. The best-fit slopes and slope uncertainties are the same as in Figs. 4a, 4b.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I = I i e σ N L ,
N ( t ) = N f ( 1 i = 1 n c i e t / τ i ) ,
i = 1 n c i = 1 .
I norm ( t ) = I ( t ) I 0 = I i f e σ N ( t ) L I i + P + ( 1 f ) I i + P I i + P .
I norm ( t ) = C 1 ( e C 2 ( 1 C 3 e C 4 t ( 1 C 3 ) e C 5 t ) 1 ) + 1 ,
C 1 = I i f I i + P , C 2 = σ N f L , C 3 = c 1 , C 4 = 1 / τ 1 , C 5 = 1 / τ 2 .

Metrics