Abstract

The nonlinear response of an ion-irradiated saturable Bragg reflector, further modified by thermal annealing, has been studied. We demonstrate that the absorption recovery time and the effective saturation fluence dependent on the pulse duration can be tailored over a wide range after epitaxial growth by the proper combination of ion irradiation and subsequent annealing. Thermal treatment is also an efficient means for the reduction of the unbleachable losses and the stabilization of the absorber parameters.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. J. Lederer, B. Luther-Davies, H. H. Tan, and C. Jagadish, “GaAs based anti-resonant Fabry-Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation,” Appl. Phys. Lett. 70, 3428-3430 (1997).
    [CrossRef]
  2. T. Hakulinen and O. G. Okhotnikov, “8 ns fiber laser Q switched by the resonant saturable absorber mirror,” Opt. Lett. 32, 2677-2679 (2007).
    [CrossRef] [PubMed]
  3. L. P. Gonzalez, S. Guha, and S. Trivedi, “Damage thresholds and nonlinear optical performance of GaP,” CLEO, in Proceedings of IEEE Conference Lasers and Electro-Optics (CLEO) (IEEE, 2004), paper CWA47.
  4. E. Lugagne Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759-761 (1998).
    [CrossRef]
  5. R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
    [CrossRef]
  6. T. Hakulinen, R. Herda, and O. G. Okhotnikov, “Nonlinear response of saturable absorber mirrors for different operation regimes,” IEEE Photon. Technol. Lett. 19, 333-335 (2007).
    [CrossRef]
  7. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46-56 (1999).
    [CrossRef]
  8. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024-2036 (1995).
    [CrossRef]
  9. H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975).
    [CrossRef]
  10. R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of the mode-locked fiber lasers,” Appl. Phys. Lett. 86, 011113 (2005).
    [CrossRef]

2007 (2)

T. Hakulinen, R. Herda, and O. G. Okhotnikov, “Nonlinear response of saturable absorber mirrors for different operation regimes,” IEEE Photon. Technol. Lett. 19, 333-335 (2007).
[CrossRef]

T. Hakulinen and O. G. Okhotnikov, “8 ns fiber laser Q switched by the resonant saturable absorber mirror,” Opt. Lett. 32, 2677-2679 (2007).
[CrossRef] [PubMed]

2005 (1)

R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of the mode-locked fiber lasers,” Appl. Phys. Lett. 86, 011113 (2005).
[CrossRef]

2004 (1)

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

1999 (1)

1998 (1)

E. Lugagne Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759-761 (1998).
[CrossRef]

1997 (1)

M. J. Lederer, B. Luther-Davies, H. H. Tan, and C. Jagadish, “GaAs based anti-resonant Fabry-Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation,” Appl. Phys. Lett. 70, 3428-3430 (1997).
[CrossRef]

1995 (1)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024-2036 (1995).
[CrossRef]

1975 (1)

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975).
[CrossRef]

Appl. Phys. Lett. (3)

E. Lugagne Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759-761 (1998).
[CrossRef]

M. J. Lederer, B. Luther-Davies, H. H. Tan, and C. Jagadish, “GaAs based anti-resonant Fabry-Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation,” Appl. Phys. Lett. 70, 3428-3430 (1997).
[CrossRef]

R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of the mode-locked fiber lasers,” Appl. Phys. Lett. 86, 011113 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Hakulinen, R. Herda, and O. G. Okhotnikov, “Nonlinear response of saturable absorber mirrors for different operation regimes,” IEEE Photon. Technol. Lett. 19, 333-335 (2007).
[CrossRef]

J. Appl. Phys. (1)

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024-2036 (1995).
[CrossRef]

Opt. Lett. (1)

Other (1)

L. P. Gonzalez, S. Guha, and S. Trivedi, “Damage thresholds and nonlinear optical performance of GaP,” CLEO, in Proceedings of IEEE Conference Lasers and Electro-Optics (CLEO) (IEEE, 2004), paper CWA47.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Change in the reflectivity response of the absorber mirror measured as a function of pulse fluence. Probe pulses measuring 2 ps and 370 ns long have been used to examine an as-grown slow absorber and an irradiated fast saturable absorber before and after annealing.

Fig. 2
Fig. 2

Unbleachable losses (empty circles) and effective saturation fluence versus recovery time of absorption measured with Q-switched pulses. Measured data (filled circles), simulated data (half-filled circles), and a hyperbolic fit of the measured data are in good agreement, confirming the validity of the absorber model for the effective saturation fluence.

Fig. 3
Fig. 3

(a)–(c) Saturable losses of a SAM (normalized to the modulation depth) as a function of the fluence and the duration of the incident pulses.

Tables (1)

Tables Icon

Table 1 Effect of Annealing on Absorption Recovery Time and the Regime of Laser Operation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F P ( d q / d F P ) < T r / τ L ,
2 I ( d q / d I ) < T r / τ L ,
d q ( t ) d t = q ( t ) q 0 τ a q ( t ) I ( t ) F sat , τ 0 ,

Metrics