Abstract

We report on the development and performance of a gas sensor based on a distributed feedback quantum cascade laser operating in continuous wave at room temperature for simultaneous measurement of nitrous oxide (N2O) and methane (CH4) concentrations at ground level. The concentrations of the gases are determined by a long path infrared diode laser absorption spectroscopy. The long-term stability of the instrument is evaluated using the Allan variance technique. A preliminary evaluation of the instrument performance is realized by in situ measurements of N2O and CH4 concentrations at ground level during 1 day. The sensor has also been applied to study the time response of N2O concentrations to a fertilizer addition in a soil sample and for the comparison between various types of soils.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Intergovernmental Panel on Climate Change (IPCC), “Climate Change 2007: the Physical Science Basis, Summary for Policymakers,” (IPCC, 2007).
  2. A. R. Mosier, “Soil processes and global change,” Biol. Fertil. Soils 27, 221-229 (1998).
    [CrossRef]
  3. T. Mitsui, M. Miyamura, A. Matsunami, K. Kitagawa, and N. Arai, “Measuring nitrous oxide in exhaled air by gas chromatography and infrared photoacoustic spectrometry,” Clin. Chem. 43, 1993-1995 (1997).
    [PubMed]
  4. R. Knowles, “Denitrification,” Microbiol Rev. , 46, 43-70(1982).
    [PubMed]
  5. J. I. Prosser, Nitrification (IRL, 1986).
  6. J. M. Duxbury, D. R. Bouldin, R. E. Terry, and R. L. Tate III, “Emission of nitrous oxide from soils,” Nature 298, 462-464 (1982).
    [CrossRef]
  7. H. Flessa, R. Ruser, R. Schilling, N. Loftfield, J. C. Munch, E. A. Kaiser, and F. Beese, “N2O and CH4 fluxes in potato fields: automated measurement, management effects and temporal variation.,” Geoderma 105, 307-325 (2002).
    [CrossRef]
  8. A. F. Bouwman, “Direct emissions of nitrous oxide from agricultural soils,” Nutr. Cycling Agroecosyst. 46, 53-70(1996).
    [CrossRef]
  9. M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, and D. Lloyd, “Measurement of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London, Ser. A 351, 371-382 (1995).
    [CrossRef]
  10. D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A 60, 3325-3335 (2004).
    [CrossRef]
  11. S. Wright, G. Duxbury, and N. Langford, “A compact quantum-cascade laser based spectrometer for monitoring the concentrations of methane and nitrous oxide in the troposphere,” Appl. Phys. B 85, 243-249 (2006).
    [CrossRef]
  12. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301-305 (2002).
    [CrossRef] [PubMed]
  13. P. Laville, C. Jambert, P. Cellier, and R. Delmas, “Nitrous oxide fluxes from a fertilised maize crop using micrometeorological and chamber methods,” Agric. Forest Meteorol. 96, 19-38 (1999).
    [CrossRef]
  14. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The hitran 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
    [CrossRef]
  15. C. Robert, “Simple, stable, and compact multiple-reflection optical cell for very long optical paths,” Appl. Opt. 46, 5408-5418 (2007).
    [CrossRef] [PubMed]
  16. V. Zéninari, B. Parvitte, L. Joly, T. Le Barbu, N. Amarouche, and G. Durry, “Laboratory spectroscopic calibration of infrared tunable laser spectrometers for the in situ sensing of the Earth and Martian atmospheres,” Appl. Phys. B 85, 265-272(2006).
    [CrossRef]
  17. S. G. Rautian and I. I. Sobel'man, Sov. Phys. Usp. 9, 701-716 (1967).
    [CrossRef]
  18. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218-1223(1961).
    [CrossRef]
  19. G. Durry, V. Zéninari, B. Parvitte, T. Le Barbu, F. Lefevre, J. Ovarlez, and R. R. Gamache, “Pressure-broadening coefficients and line strengths of H2O near 1.39 μm: application to the in situ sensing of the middle atmosphere with balloonborne diode lasers,” J. Quant. Spectrosc. Radiat. Transf. 94, 387-403 (2005).
    [CrossRef]
  20. P. Werle, R. Muecke, and F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption spectroscopy,” Appl. Phys. B 57, 131-139(1993).
    [CrossRef]
  21. E. S. Ferre-Pikal, J. R. Vig, J. C. Camparo, L. S. Cutler, L. Maleki, W. J. Riley, S. R. Stein, C. Thomas, F. L. Walls, and J. D. White, “Draft revision of IEEE STD 1139-1988 standard definitions of physical quantities for fundamental frequency and time metrology--random instabilities,” in Proceedings of the Annual IEEE International Frequency Control Symposium (IEEE, 1997), pp. 338-357.
  22. ISSS-ISRIC-FAO, “World reference base for soil resources,” Rep. No. 84 (World Soil Resources, 1998).

2007 (1)

2006 (2)

V. Zéninari, B. Parvitte, L. Joly, T. Le Barbu, N. Amarouche, and G. Durry, “Laboratory spectroscopic calibration of infrared tunable laser spectrometers for the in situ sensing of the Earth and Martian atmospheres,” Appl. Phys. B 85, 265-272(2006).
[CrossRef]

S. Wright, G. Duxbury, and N. Langford, “A compact quantum-cascade laser based spectrometer for monitoring the concentrations of methane and nitrous oxide in the troposphere,” Appl. Phys. B 85, 243-249 (2006).
[CrossRef]

2005 (2)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The hitran 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

G. Durry, V. Zéninari, B. Parvitte, T. Le Barbu, F. Lefevre, J. Ovarlez, and R. R. Gamache, “Pressure-broadening coefficients and line strengths of H2O near 1.39 μm: application to the in situ sensing of the middle atmosphere with balloonborne diode lasers,” J. Quant. Spectrosc. Radiat. Transf. 94, 387-403 (2005).
[CrossRef]

2004 (1)

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A 60, 3325-3335 (2004).
[CrossRef]

2002 (2)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301-305 (2002).
[CrossRef] [PubMed]

H. Flessa, R. Ruser, R. Schilling, N. Loftfield, J. C. Munch, E. A. Kaiser, and F. Beese, “N2O and CH4 fluxes in potato fields: automated measurement, management effects and temporal variation.,” Geoderma 105, 307-325 (2002).
[CrossRef]

1999 (1)

P. Laville, C. Jambert, P. Cellier, and R. Delmas, “Nitrous oxide fluxes from a fertilised maize crop using micrometeorological and chamber methods,” Agric. Forest Meteorol. 96, 19-38 (1999).
[CrossRef]

1998 (1)

A. R. Mosier, “Soil processes and global change,” Biol. Fertil. Soils 27, 221-229 (1998).
[CrossRef]

1997 (1)

T. Mitsui, M. Miyamura, A. Matsunami, K. Kitagawa, and N. Arai, “Measuring nitrous oxide in exhaled air by gas chromatography and infrared photoacoustic spectrometry,” Clin. Chem. 43, 1993-1995 (1997).
[PubMed]

1996 (1)

A. F. Bouwman, “Direct emissions of nitrous oxide from agricultural soils,” Nutr. Cycling Agroecosyst. 46, 53-70(1996).
[CrossRef]

1995 (1)

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, and D. Lloyd, “Measurement of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London, Ser. A 351, 371-382 (1995).
[CrossRef]

1993 (1)

P. Werle, R. Muecke, and F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption spectroscopy,” Appl. Phys. B 57, 131-139(1993).
[CrossRef]

1982 (2)

R. Knowles, “Denitrification,” Microbiol Rev. , 46, 43-70(1982).
[PubMed]

J. M. Duxbury, D. R. Bouldin, R. E. Terry, and R. L. Tate III, “Emission of nitrous oxide from soils,” Nature 298, 462-464 (1982).
[CrossRef]

1967 (1)

S. G. Rautian and I. I. Sobel'man, Sov. Phys. Usp. 9, 701-716 (1967).
[CrossRef]

1961 (1)

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218-1223(1961).
[CrossRef]

Agric. Forest Meteorol. (1)

P. Laville, C. Jambert, P. Cellier, and R. Delmas, “Nitrous oxide fluxes from a fertilised maize crop using micrometeorological and chamber methods,” Agric. Forest Meteorol. 96, 19-38 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

P. Werle, R. Muecke, and F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption spectroscopy,” Appl. Phys. B 57, 131-139(1993).
[CrossRef]

V. Zéninari, B. Parvitte, L. Joly, T. Le Barbu, N. Amarouche, and G. Durry, “Laboratory spectroscopic calibration of infrared tunable laser spectrometers for the in situ sensing of the Earth and Martian atmospheres,” Appl. Phys. B 85, 265-272(2006).
[CrossRef]

S. Wright, G. Duxbury, and N. Langford, “A compact quantum-cascade laser based spectrometer for monitoring the concentrations of methane and nitrous oxide in the troposphere,” Appl. Phys. B 85, 243-249 (2006).
[CrossRef]

Biol. Fertil. Soils (1)

A. R. Mosier, “Soil processes and global change,” Biol. Fertil. Soils 27, 221-229 (1998).
[CrossRef]

Clin. Chem. (1)

T. Mitsui, M. Miyamura, A. Matsunami, K. Kitagawa, and N. Arai, “Measuring nitrous oxide in exhaled air by gas chromatography and infrared photoacoustic spectrometry,” Clin. Chem. 43, 1993-1995 (1997).
[PubMed]

Geoderma (1)

H. Flessa, R. Ruser, R. Schilling, N. Loftfield, J. C. Munch, E. A. Kaiser, and F. Beese, “N2O and CH4 fluxes in potato fields: automated measurement, management effects and temporal variation.,” Geoderma 105, 307-325 (2002).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (2)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The hitran 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

G. Durry, V. Zéninari, B. Parvitte, T. Le Barbu, F. Lefevre, J. Ovarlez, and R. R. Gamache, “Pressure-broadening coefficients and line strengths of H2O near 1.39 μm: application to the in situ sensing of the middle atmosphere with balloonborne diode lasers,” J. Quant. Spectrosc. Radiat. Transf. 94, 387-403 (2005).
[CrossRef]

Microbiol Rev. (1)

R. Knowles, “Denitrification,” Microbiol Rev. , 46, 43-70(1982).
[PubMed]

Nature (1)

J. M. Duxbury, D. R. Bouldin, R. E. Terry, and R. L. Tate III, “Emission of nitrous oxide from soils,” Nature 298, 462-464 (1982).
[CrossRef]

Nutr. Cycling Agroecosyst. (1)

A. F. Bouwman, “Direct emissions of nitrous oxide from agricultural soils,” Nutr. Cycling Agroecosyst. 46, 53-70(1996).
[CrossRef]

Philos. Trans. R. Soc. London, Ser. A (1)

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, and D. Lloyd, “Measurement of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London, Ser. A 351, 371-382 (1995).
[CrossRef]

Phys. Rev. (1)

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218-1223(1961).
[CrossRef]

Science (1)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301-305 (2002).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

S. G. Rautian and I. I. Sobel'man, Sov. Phys. Usp. 9, 701-716 (1967).
[CrossRef]

Spectrochim. Acta, Part A (1)

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A 60, 3325-3335 (2004).
[CrossRef]

Other (4)

J. I. Prosser, Nitrification (IRL, 1986).

Intergovernmental Panel on Climate Change (IPCC), “Climate Change 2007: the Physical Science Basis, Summary for Policymakers,” (IPCC, 2007).

E. S. Ferre-Pikal, J. R. Vig, J. C. Camparo, L. S. Cutler, L. Maleki, W. J. Riley, S. R. Stein, C. Thomas, F. L. Walls, and J. D. White, “Draft revision of IEEE STD 1139-1988 standard definitions of physical quantities for fundamental frequency and time metrology--random instabilities,” in Proceedings of the Annual IEEE International Frequency Control Symposium (IEEE, 1997), pp. 338-357.

ISSS-ISRIC-FAO, “World reference base for soil resources,” Rep. No. 84 (World Soil Resources, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup: QCL stands for quantum cascade laser and BS for beam splitter.

Fig. 2
Fig. 2

Photograph of the actual sensor.

Fig. 3
Fig. 3

Calculated spectra using hitran 2004 parameters in the QCL’s spectral range emission. Temperature is 291 K , pressure is 50 mbar , and path length is 140 m . Volume mixing ratios are 9000 ppm for H 2 O , 319 ppb for N 2 O , and 2 ppm for CH 4 .

Fig. 4
Fig. 4

Average signal of 50 elementary spectra is 0.5 s . The upper black curve shows the signal obtained with 45 mbar of atmospheric air in the cell. The gray curve represents the baseline. The lower curve represents fringes obtained from the 0.01 cm 1 free spectral range etalon.

Fig. 5
Fig. 5

Example of a recorded spectrum for air (black points) and fitted spectrum (gray curve). The (experimental minus calculated) residual is shown in the lower panel. The retrieved volume mixing ratios are 1.92 ppm of CH 4 and 320 ppb of N 2 O .

Fig. 6
Fig. 6

Zoom spectrum on the small H 2 O line at 1270.95 cm 1 . The (experimental minus calculated) residual is shown in the lower panel.

Fig. 7
Fig. 7

N 2 O concentrations over 7 h and corresponding Allan variance.

Fig. 8
Fig. 8

Atmospheric N 2 O (upper panel) and CH 4 (lower panel) measurements. Gray points correspond to concentrations obtained each 5 s and black points correspond to an average on 30 successive results.

Fig. 9
Fig. 9

N 2 O (upper panel) and CH 4 (lower panel) concentration measurements after a N fertilizer addition. Gray points correspond to concentrations obtained each 5 s and the black curve corresponds to an integration time of 1 min .

Tables (1)

Tables Icon

Table 1 N 2 O and CH 4 Concentrations for Various Soil Samples After Addition of N Fertilizer

Metrics