Abstract

A practical ytterbium-doped mode-locked fiber source producing 89fs pulses without an external bulk compensator was developed by investigating the pulse propagation dynamics in a mode-locked fiber laser with small average dispersion. Negatively chirped pulses are taken from the cavity and compressed in a standard output fiber resulting in high-quality pulses.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, “Generation of 36-femtosecond pulses from a ytterbium fiber laser,” Opt. Express 11, 3550-3554 (2003).
    [CrossRef] [PubMed]
  2. L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, “Picosecond SESAM-based ytterbium mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004).
    [CrossRef]
  3. A. Isomäki and O. G. Okhotnikov, “All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Opt. Express 14, 4368-4373 (2006).
    [CrossRef] [PubMed]
  4. A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14, 9238-9243 (2006).
    [CrossRef] [PubMed]
  5. S. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, “Dispersion-managed mode locking,” J. Opt. Soc. Am. B 16, 1999-2004 (1999).
    [CrossRef]
  6. F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, “Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,” Opt. Lett. 28, 1365-1367 (2003).
    [CrossRef] [PubMed]
  7. H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12, 2231-2235 (2004).
    [CrossRef] [PubMed]
  8. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
    [CrossRef]
  9. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15, 8252-8262 (2007).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  11. H. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975).
    [CrossRef]
  12. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277-294 (1997).
    [CrossRef]
  13. R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
    [CrossRef]
  14. R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86, 011113 (2005).
    [CrossRef]
  15. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).
  16. K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225-1233 (1989).
    [CrossRef]
  17. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, F. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, “High-power picosecond fiber amplifier based on nonlinear spectral compression,” Opt. Lett. 30, 714-716 (2005).
    [CrossRef] [PubMed]

2007

2006

2005

2004

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, “Picosecond SESAM-based ytterbium mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12, 2231-2235 (2004).
[CrossRef] [PubMed]

2003

1999

1997

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

1995

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

1989

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

1975

H. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975).
[CrossRef]

Appl. Phys. B

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

Appl. Phys. Lett.

R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86, 011113 (2005).
[CrossRef]

IEEE J. Quantum Electron.

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, “Picosecond SESAM-based ytterbium mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

J. Appl. Phys.

H. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup of the fiber laser.

Fig. 2
Fig. 2

(a) Spectral and (b) temporal pulse evolution in the fiber laser cavity during one round trip starting from the location of the SESAM. The grating pair is located at 800 mm .

Fig. 3
Fig. 3

Pulse durations (blue, left axis) and spectral widths (red, right axis) in the mode-locked fiber laser at different locations. The regions with positive and negative chirp are marked in the figure.

Fig. 4
Fig. 4

(a) Pulse spectra and (b) temporal shapes in the mode-locked fiber laser for different locations.

Fig. 5
Fig. 5

(a) Spectrum and (b) autocorrelation of the pulse (black, narrow line: measured; red, bold line: retrieved). (c) Pulse intensity (left axis) and phase (right axis) derived from the spectrum and the autocorrelation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A z = i β 2 2 2 A T 2 + β 3 6 3 A T 3 + i γ | A | 2 A + 1 2 g A ,
d q ( t ) d t = q ( t ) q 0 τ A q | A ( t ) | 2 E sat , A ,

Metrics