Abstract

A practical ytterbium-doped mode-locked fiber source producing 89fs pulses without an external bulk compensator was developed by investigating the pulse propagation dynamics in a mode-locked fiber laser with small average dispersion. Negatively chirped pulses are taken from the cavity and compressed in a standard output fiber resulting in high-quality pulses.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, “Generation of 36-femtosecond pulses from a ytterbium fiber laser,” Opt. Express 11, 3550-3554 (2003).
    [CrossRef] [PubMed]
  2. L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, “Picosecond SESAM-based ytterbium mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004).
    [CrossRef]
  3. A. Isomäki and O. G. Okhotnikov, “All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Opt. Express 14, 4368-4373 (2006).
    [CrossRef] [PubMed]
  4. A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14, 9238-9243 (2006).
    [CrossRef] [PubMed]
  5. S. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, “Dispersion-managed mode locking,” J. Opt. Soc. Am. B 16, 1999-2004 (1999).
    [CrossRef]
  6. F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, “Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,” Opt. Lett. 28, 1365-1367 (2003).
    [CrossRef] [PubMed]
  7. H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12, 2231-2235 (2004).
    [CrossRef] [PubMed]
  8. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
    [CrossRef]
  9. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15, 8252-8262 (2007).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  11. H. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975).
    [CrossRef]
  12. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277-294 (1997).
    [CrossRef]
  13. R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
    [CrossRef]
  14. R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86, 011113 (2005).
    [CrossRef]
  15. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).
  16. K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225-1233 (1989).
    [CrossRef]
  17. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, F. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, “High-power picosecond fiber amplifier based on nonlinear spectral compression,” Opt. Lett. 30, 714-716 (2005).
    [CrossRef] [PubMed]

2007 (1)

2006 (2)

2005 (2)

2004 (3)

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, “Picosecond SESAM-based ytterbium mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12, 2231-2235 (2004).
[CrossRef] [PubMed]

2003 (2)

1999 (1)

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

1995 (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

1989 (1)

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

1975 (1)

H. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975).
[CrossRef]

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86, 011113 (2005).
[CrossRef]

IEEE J. Quantum Electron. (3)

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, “Picosecond SESAM-based ytterbium mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

J. Appl. Phys. (1)

H. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (2)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup of the fiber laser.

Fig. 2
Fig. 2

(a) Spectral and (b) temporal pulse evolution in the fiber laser cavity during one round trip starting from the location of the SESAM. The grating pair is located at 800 mm .

Fig. 3
Fig. 3

Pulse durations (blue, left axis) and spectral widths (red, right axis) in the mode-locked fiber laser at different locations. The regions with positive and negative chirp are marked in the figure.

Fig. 4
Fig. 4

(a) Pulse spectra and (b) temporal shapes in the mode-locked fiber laser for different locations.

Fig. 5
Fig. 5

(a) Spectrum and (b) autocorrelation of the pulse (black, narrow line: measured; red, bold line: retrieved). (c) Pulse intensity (left axis) and phase (right axis) derived from the spectrum and the autocorrelation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A z = i β 2 2 2 A T 2 + β 3 6 3 A T 3 + i γ | A | 2 A + 1 2 g A ,
d q ( t ) d t = q ( t ) q 0 τ A q | A ( t ) | 2 E sat , A ,

Metrics