Abstract

Amplified spontaneous emission (ASE) characteristics of a green fluorescent dye (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1] benzo- pyrano [6,7,8-ij]quinolizin-11-one) (C545T) encapsulated in a highly ordered three-dimensional (3D) inverted-opal titania (TiO2) photonic crystal (PC) microcavity were studied. Due to the utilization of a TiO2 PC, the emission spectrum was greatly narrowed and the ASE threshold, gain, and loss were significantly improved. The threshold, gain, and loss reached 1.25mJpulse1cm2, 34.69cm1, and 16.9cm1, respectively. The possible reason for the improvement in the ASE performance by the PC is attributed to the 3D photon localization by the microcavity effect of the PC.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Burstein and C. Weisbuch, eds., Confined Electrons and Photons: New Physics and Applications (Plenum, 1995).
    [CrossRef]
  2. J. G. Rarity and C. Weisbuch, eds., Microcavities and Photonic Bandgaps: Physics and Applications (Kluwer, 1996).
  3. M. Ducloy and D. Bloch, Quantum Optics of Confined Systems (Kluwer, 1996).
  4. N. P. Johnson, D. W. McComb, A. Richel, B. M. Treble, and R. M. De La Rue, “Synthesis and optical properties of opal and inverse opal photonic crystals,” Synth. Met. 116, 469-473 (2001).
    [CrossRef]
  5. D. Comoretto, R. Grassi, F. Marabelli, and L. C. Andreani, “Growth and optical studies of opal films as three-dimensional photonic crystals,” Mater. Sci. Eng. C 23, 61-65 (2003).
    [CrossRef]
  6. G. I. N. Waterhouse and M. R. Waterland, “Opal and inverse opal photonic crystals: Fabrication and characterization,” Polyhedron 26, 356-368 (2007).
    [CrossRef]
  7. H. Fudouzi, “Novel coating method for artificial opal films and its process analysis,” Colloids Surf. A 311, 11-15 (2007).
    [CrossRef]
  8. Y.-W. Chung, I.-C. Leu, J.-H. Lee, and M.-H. Hon, “Fabrication and characterization of core-shell photonic crystals via a dipping process,” Colloids Surf. A 290, 256-262 (2006).
    [CrossRef]
  9. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  10. J. Martorell and N. M. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877-1880 (1990).
    [CrossRef]
  11. K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal,” Appl. Phys. Lett. 73, 3506-3508 (1998).
    [CrossRef]
  12. Y. A. Vlasov, K. Luterova, I. Pelant, B. Honerlage, and V. N. Astratov, “Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals,” Appl. Phys. Lett. 71, 1616-1618 (1997).
    [CrossRef]
  13. T. Baba, D. Sano, K. Nozaki, K. Inoshita, and Y. Kuroki, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989-3991 (2004).
    [CrossRef]
  14. P. Yu and P. Bhattacharya, “Enhanced spontaneous emission from InAs/GaAs self-organized quantum dots in a GaAs photonic-crystal-based microcavity,” J. Appl. Phys. 93, 6173-6176 (2003).
    [CrossRef]
  15. S. L. Kuai, V. V. Truong, A. Hache, and X. F. Hu,“A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates,” J. Appl. Phys. 96, 5982-5986 (2004).
    [CrossRef]
  16. A. Chutinan and S. John, “Diffractionless optical networking in an inverse opal photonic band gap micro-chip,” Photon. Nanostruct. Fundam. Appl. 2, 41-49 (2004).
    [CrossRef]
  17. M. V. Rybin, K. B. Samusev, and M. F. Limonov, “High miller-index photonic bands in synthetic opals, ” Photon. Nanostruct. Fundam. Appl. 5, 119-124 (2007).
    [CrossRef]
  18. S. Kuai, S. Badilescu, G. Bader, R. Bruning, X. F. Hu, and V. V. Truong, “Preparation of large-area 3D ordered macroporous titania films by silica colloidal crystal templating,” Adv. Mater. 15, 73-75 (2003).
    [CrossRef]
  19. J. Li, W. Huang, and Y. Han, “Tunable photonic crystals by mixed liquids,” Colloids Surf. A 279, 213-217 (2006).
    [CrossRef]
  20. W. Lu, B. Zhong, and D. G. Ma, “Amplified spontaneous emission and gain from optically pumped films of dye-doped polymers,” Appl. Opt. 43, 5074-5078 (2004).
    [CrossRef] [PubMed]
  21. M. El Kurdi, S. David, P. Boucard, C. Kammerer, X. Li, V. Le Thanh, and S. Sauvage, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997-1000 (2004).
    [CrossRef]
  22. K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18, 475-477 (1971).
    [CrossRef]
  23. P.Berman, ed., Cavity Quantum Electrodynamics (Advances in Atomic Molecular, and Optical Physics) (Academic, 1994).

2007

G. I. N. Waterhouse and M. R. Waterland, “Opal and inverse opal photonic crystals: Fabrication and characterization,” Polyhedron 26, 356-368 (2007).
[CrossRef]

H. Fudouzi, “Novel coating method for artificial opal films and its process analysis,” Colloids Surf. A 311, 11-15 (2007).
[CrossRef]

M. V. Rybin, K. B. Samusev, and M. F. Limonov, “High miller-index photonic bands in synthetic opals, ” Photon. Nanostruct. Fundam. Appl. 5, 119-124 (2007).
[CrossRef]

2006

J. Li, W. Huang, and Y. Han, “Tunable photonic crystals by mixed liquids,” Colloids Surf. A 279, 213-217 (2006).
[CrossRef]

Y.-W. Chung, I.-C. Leu, J.-H. Lee, and M.-H. Hon, “Fabrication and characterization of core-shell photonic crystals via a dipping process,” Colloids Surf. A 290, 256-262 (2006).
[CrossRef]

2004

M. El Kurdi, S. David, P. Boucard, C. Kammerer, X. Li, V. Le Thanh, and S. Sauvage, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997-1000 (2004).
[CrossRef]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, and Y. Kuroki, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989-3991 (2004).
[CrossRef]

S. L. Kuai, V. V. Truong, A. Hache, and X. F. Hu,“A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates,” J. Appl. Phys. 96, 5982-5986 (2004).
[CrossRef]

A. Chutinan and S. John, “Diffractionless optical networking in an inverse opal photonic band gap micro-chip,” Photon. Nanostruct. Fundam. Appl. 2, 41-49 (2004).
[CrossRef]

W. Lu, B. Zhong, and D. G. Ma, “Amplified spontaneous emission and gain from optically pumped films of dye-doped polymers,” Appl. Opt. 43, 5074-5078 (2004).
[CrossRef] [PubMed]

2003

P. Yu and P. Bhattacharya, “Enhanced spontaneous emission from InAs/GaAs self-organized quantum dots in a GaAs photonic-crystal-based microcavity,” J. Appl. Phys. 93, 6173-6176 (2003).
[CrossRef]

S. Kuai, S. Badilescu, G. Bader, R. Bruning, X. F. Hu, and V. V. Truong, “Preparation of large-area 3D ordered macroporous titania films by silica colloidal crystal templating,” Adv. Mater. 15, 73-75 (2003).
[CrossRef]

D. Comoretto, R. Grassi, F. Marabelli, and L. C. Andreani, “Growth and optical studies of opal films as three-dimensional photonic crystals,” Mater. Sci. Eng. C 23, 61-65 (2003).
[CrossRef]

2001

N. P. Johnson, D. W. McComb, A. Richel, B. M. Treble, and R. M. De La Rue, “Synthesis and optical properties of opal and inverse opal photonic crystals,” Synth. Met. 116, 469-473 (2001).
[CrossRef]

1998

K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal,” Appl. Phys. Lett. 73, 3506-3508 (1998).
[CrossRef]

1997

Y. A. Vlasov, K. Luterova, I. Pelant, B. Honerlage, and V. N. Astratov, “Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals,” Appl. Phys. Lett. 71, 1616-1618 (1997).
[CrossRef]

1990

J. Martorell and N. M. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877-1880 (1990).
[CrossRef]

1987

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

1971

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18, 475-477 (1971).
[CrossRef]

Adv. Mater.

S. Kuai, S. Badilescu, G. Bader, R. Bruning, X. F. Hu, and V. V. Truong, “Preparation of large-area 3D ordered macroporous titania films by silica colloidal crystal templating,” Adv. Mater. 15, 73-75 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18, 475-477 (1971).
[CrossRef]

K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal,” Appl. Phys. Lett. 73, 3506-3508 (1998).
[CrossRef]

Y. A. Vlasov, K. Luterova, I. Pelant, B. Honerlage, and V. N. Astratov, “Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals,” Appl. Phys. Lett. 71, 1616-1618 (1997).
[CrossRef]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, and Y. Kuroki, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989-3991 (2004).
[CrossRef]

Colloids Surf. A

J. Li, W. Huang, and Y. Han, “Tunable photonic crystals by mixed liquids,” Colloids Surf. A 279, 213-217 (2006).
[CrossRef]

H. Fudouzi, “Novel coating method for artificial opal films and its process analysis,” Colloids Surf. A 311, 11-15 (2007).
[CrossRef]

Y.-W. Chung, I.-C. Leu, J.-H. Lee, and M.-H. Hon, “Fabrication and characterization of core-shell photonic crystals via a dipping process,” Colloids Surf. A 290, 256-262 (2006).
[CrossRef]

J. Appl. Phys.

M. El Kurdi, S. David, P. Boucard, C. Kammerer, X. Li, V. Le Thanh, and S. Sauvage, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96, 997-1000 (2004).
[CrossRef]

P. Yu and P. Bhattacharya, “Enhanced spontaneous emission from InAs/GaAs self-organized quantum dots in a GaAs photonic-crystal-based microcavity,” J. Appl. Phys. 93, 6173-6176 (2003).
[CrossRef]

S. L. Kuai, V. V. Truong, A. Hache, and X. F. Hu,“A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates,” J. Appl. Phys. 96, 5982-5986 (2004).
[CrossRef]

Mater. Sci. Eng. C

D. Comoretto, R. Grassi, F. Marabelli, and L. C. Andreani, “Growth and optical studies of opal films as three-dimensional photonic crystals,” Mater. Sci. Eng. C 23, 61-65 (2003).
[CrossRef]

Photon. Nanostruct. Fundam. Appl.

A. Chutinan and S. John, “Diffractionless optical networking in an inverse opal photonic band gap micro-chip,” Photon. Nanostruct. Fundam. Appl. 2, 41-49 (2004).
[CrossRef]

M. V. Rybin, K. B. Samusev, and M. F. Limonov, “High miller-index photonic bands in synthetic opals, ” Photon. Nanostruct. Fundam. Appl. 5, 119-124 (2007).
[CrossRef]

Phys. Rev. Lett.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

J. Martorell and N. M. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877-1880 (1990).
[CrossRef]

Polyhedron

G. I. N. Waterhouse and M. R. Waterland, “Opal and inverse opal photonic crystals: Fabrication and characterization,” Polyhedron 26, 356-368 (2007).
[CrossRef]

Synth. Met.

N. P. Johnson, D. W. McComb, A. Richel, B. M. Treble, and R. M. De La Rue, “Synthesis and optical properties of opal and inverse opal photonic crystals,” Synth. Met. 116, 469-473 (2001).
[CrossRef]

Other

E. Burstein and C. Weisbuch, eds., Confined Electrons and Photons: New Physics and Applications (Plenum, 1995).
[CrossRef]

J. G. Rarity and C. Weisbuch, eds., Microcavities and Photonic Bandgaps: Physics and Applications (Kluwer, 1996).

M. Ducloy and D. Bloch, Quantum Optics of Confined Systems (Kluwer, 1996).

P.Berman, ed., Cavity Quantum Electrodynamics (Advances in Atomic Molecular, and Optical Physics) (Academic, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Typical SEM images of titania PCs. (a) Ordered surface regions about 30 μm (b) Cross section of 3D ordering of pores. The higher magnification image (shown in the inset) reveals the interconnected pores.

Fig. 2
Fig. 2

Photonic band diagram of the inverted-opal Ti O 2 PCs.

Fig. 3
Fig. 3

Emission spectra of the (a) C545T encapsulated Ti O 2 PC and the (b) C545T:PS film at different pumped energies. The pumping area by the pulsed source is an 0.8 mm × 5 mm long narrow strip.

Fig. 4
Fig. 4

(circles) Output emission intensity of the C545T encapsulated in the Ti O 2 PC microcavity integrated over all wavelengths as a function of the pump intensity and (squares) the dependence of the FWHM on the pumped intensity.

Fig. 5
Fig. 5

Dependence of the emission intensity at peak wavelength on the excitation length at different pump intensities for the C545T encapsulated Ti O 2 PC ( λ peak = 574 nm ).

Fig. 6
Fig. 6

Intensity of light emitted at λ peak = 574 nm from the edge of a waveguide as a function of the distance between the pump stripe and the edge of the C545T encapsulated Ti O 2 PC.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = A ( λ ) I P G ( λ ) ( e G ( λ ) L 1 ) ,
I edge ( λ ) = I 0 ( λ ) exp [ α ( λ ) L ] ,

Metrics