Abstract

A major issue in the use of high-power lasers, such as the Laser Megajoule (LMJ), is laser-induced damage of optical components. One potential damage initiator is particulate contamination, but its effect is hard to distinguish from that of other damage precursors. To do so, we introduced artificial contaminants typical of metallic pollution likely to be present on the optical components of the LMJ chains. More precisely, aluminum particles of two different sizes were placed on a silica sample. These dots were characterized by optical microscopy and profilometry. Then they were exposed to a laser beam with a pulse length of 6.5ns at 1064nm and fluences in the range from 1 to 40J/cm2. Each dot was characterized again with the same techniques and also by photothermal microscopy. To complete the experimental results, we performed numerical simulations with a one-dimensional Lagrangian hydrodynamics code. We show that the particle removal by laser irradiation produces a modification of the silica surface that does not evolve into catastrophic damage under subsequent irradiation. However, the effect does depend on the size of the dots. We demonstrate that a procedure exists that removes the dot and leaves the site capable of resisting high fluence.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. André, C. Cavailler, and F. Jéquier, “LMJ superlaser for inertial confinement fusion,” Vide Sci. Technol. Appl. 57, 13-28 (2003).
  2. H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, “The impact of laser damage on the lifetime of optical components in fusion lasers ,” Proc. SPIE 5273, 312-324(2004).
  3. R. M. Wood, Laser Induced Damage in Optical Materials (Taylor & Francis, 2003).
    [CrossRef]
  4. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661-664 (1973).
    [CrossRef] [PubMed]
  5. M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, “Laser induced damage and the role of self-focusing,” Opt. Eng. 28, 1133-1143 (1989).
  6. I. A. Fersman and L. D. Khazov, “The effect of surface cleanliness of optical elements on their radiation resistance,” Sov. J. Opt. Technol. 37, 627-629 (1971) [Opt. Mekh. Prom. 37, 69-70 (1971)].
  7. D. M. Kane and D. R. Halfpenny, “Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: a mechanism for systematic surface laser damage,” J. Appl. Phys. 87, 4548-4552 (2000).
    [CrossRef]
  8. J. Honig, “Cleanliness improvements of National Ignition Facility amplifiers as compared to previous large-scale lasers,” Opt. Eng. 43, 2904-2911 (2004).
    [CrossRef]
  9. S. Palmier, S. Garcia, L. Lamaignère, M. Loiseau, T. Donval, J. L. Rullier, I. Tovena, and L. Servant, “Surface particulate contamination of the LIL optical components and their evolution under laser irradiation,” Proc. SPIE 6403, 64030V1-10(2006).
  10. D. Schirman, L. Bianchi, R. Courchinoux, A. Fornier, H. P. Jacquet, F. Jequier, A. Geille, J. C. Gommé, and T. Lonjaret, “LMJ target area design and engineering physics inside the LMJ target chamber,” Proc. SPIE 3492, 710-717 (1999).
    [CrossRef]
  11. F. Y. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654-3663 (2000).
    [CrossRef]
  12. F. Y. Génin, M. R. Kozlowski, and R. Brusasco, “Catastrophic failure of contaminated fused silica optics at 355 nm,” Proc. SPIE 3047, 978-986 (1997).
  13. F. Y. Génin, K. Mitchlitsch, J. Furr, M. R. Kozwolski, and P. Krulevitch, “Laser induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126-139 (1997).
    [CrossRef]
  14. J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351 nm and 527 nm laser initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129-136(2005).
    [CrossRef]
  15. M. A. Norton, C. J. Stolz, E. E. Donohue, W. G. Hollingsworth, K. Listiyo, J. A. Pryatel, and R. P. Hackel, “Impact of contaminants on the laser damage threshold of 1ω HR coatings,” Proc. SPIE 5991, 5991OO1-9 (2005).
  16. S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Laser damage to optical components induced by surface chromium particles,” Proc. SPIE 5647, 156-165 (2005).
    [CrossRef]
  17. S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 5991OR1-9 (2005).
  18. J. Capoulade, J. Y. Natoli, S. Palmier, J. L. Rullier, and I. Tovena, “Influence of artificial defects size on the surface cleaning process,” Proc. SPIE 6403, 64030G1-10 (2007).
  19. M. D. Crips, N. L. Boiling, and G. Dubé, “Importance of the Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21, 364-366 (1972).
    [CrossRef]
  20. M. Commandré and P. Roche, “Characterization of optical coating by photothermal deflection,” Appl. Opt. 35, 5021-5034(1996).
    [CrossRef] [PubMed]
  21. B. Bertussi, J. Y. Natoli, and M. Commandré, “High-resolution photothermal microscope: a sensitive tool for the detection of isolated absorbing defects in optical coatings,” Appl. Opt. 45, 1410-1415 (2006).
    [CrossRef] [PubMed]
  22. S. Papernov and A. W. Schmid, “Using nanoparticles as artificial defects in thin films: What we have learned about laser induced damage driven by localized absorbers?,” Proc. SPIE 6403, 64030D1-26 (2006).
  23. F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447-452 (2004).
    [CrossRef]
  24. P. Combis, F. Bonneau, G. Daval, and L. Lamaignère, “Laser induced damage simulations of absorbing materials under pulsed IR irradiation,” Proc. SPIE 3902, 317-324 (2000).
    [CrossRef]
  25. J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parahm, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56-68 (2002).
    [CrossRef]
  26. Y. Zhao, J. Shao, H. He, and Z. Fan, “Laesr conditioning of high-reflective coatings and anti-reflective coatings at 1064 nm,” Proc. SPIE 5991, 5991171-6 (2005).
  27. C. C. Widmayer, D. Milam, and S. P. de Szoeke, “Nonlinear formation of holographic images of obscurations in laser beams,”Appl. Opt. 36, 9342-9347 (1997).
    [CrossRef]
  28. B. Martinez, V. Beau, S. Chico, S. Mainguy, and J. L. Rullier, “Numerical and experimental study of focal spot degradation induced by particles on surface optics,” Proc. SPIE 6403, 64030F1-9 (2006).

2007 (1)

J. Capoulade, J. Y. Natoli, S. Palmier, J. L. Rullier, and I. Tovena, “Influence of artificial defects size on the surface cleaning process,” Proc. SPIE 6403, 64030G1-10 (2007).

2006 (4)

S. Palmier, S. Garcia, L. Lamaignère, M. Loiseau, T. Donval, J. L. Rullier, I. Tovena, and L. Servant, “Surface particulate contamination of the LIL optical components and their evolution under laser irradiation,” Proc. SPIE 6403, 64030V1-10(2006).

S. Papernov and A. W. Schmid, “Using nanoparticles as artificial defects in thin films: What we have learned about laser induced damage driven by localized absorbers?,” Proc. SPIE 6403, 64030D1-26 (2006).

B. Martinez, V. Beau, S. Chico, S. Mainguy, and J. L. Rullier, “Numerical and experimental study of focal spot degradation induced by particles on surface optics,” Proc. SPIE 6403, 64030F1-9 (2006).

B. Bertussi, J. Y. Natoli, and M. Commandré, “High-resolution photothermal microscope: a sensitive tool for the detection of isolated absorbing defects in optical coatings,” Appl. Opt. 45, 1410-1415 (2006).
[CrossRef] [PubMed]

2005 (5)

Y. Zhao, J. Shao, H. He, and Z. Fan, “Laesr conditioning of high-reflective coatings and anti-reflective coatings at 1064 nm,” Proc. SPIE 5991, 5991171-6 (2005).

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351 nm and 527 nm laser initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129-136(2005).
[CrossRef]

M. A. Norton, C. J. Stolz, E. E. Donohue, W. G. Hollingsworth, K. Listiyo, J. A. Pryatel, and R. P. Hackel, “Impact of contaminants on the laser damage threshold of 1ω HR coatings,” Proc. SPIE 5991, 5991OO1-9 (2005).

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Laser damage to optical components induced by surface chromium particles,” Proc. SPIE 5647, 156-165 (2005).
[CrossRef]

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 5991OR1-9 (2005).

2004 (3)

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447-452 (2004).
[CrossRef]

J. Honig, “Cleanliness improvements of National Ignition Facility amplifiers as compared to previous large-scale lasers,” Opt. Eng. 43, 2904-2911 (2004).
[CrossRef]

H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, “The impact of laser damage on the lifetime of optical components in fusion lasers ,” Proc. SPIE 5273, 312-324(2004).

2003 (1)

M. André, C. Cavailler, and F. Jéquier, “LMJ superlaser for inertial confinement fusion,” Vide Sci. Technol. Appl. 57, 13-28 (2003).

2002 (1)

J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parahm, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56-68 (2002).
[CrossRef]

2000 (3)

F. Y. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654-3663 (2000).
[CrossRef]

D. M. Kane and D. R. Halfpenny, “Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: a mechanism for systematic surface laser damage,” J. Appl. Phys. 87, 4548-4552 (2000).
[CrossRef]

P. Combis, F. Bonneau, G. Daval, and L. Lamaignère, “Laser induced damage simulations of absorbing materials under pulsed IR irradiation,” Proc. SPIE 3902, 317-324 (2000).
[CrossRef]

1999 (1)

D. Schirman, L. Bianchi, R. Courchinoux, A. Fornier, H. P. Jacquet, F. Jequier, A. Geille, J. C. Gommé, and T. Lonjaret, “LMJ target area design and engineering physics inside the LMJ target chamber,” Proc. SPIE 3492, 710-717 (1999).
[CrossRef]

1997 (3)

F. Y. Génin, M. R. Kozlowski, and R. Brusasco, “Catastrophic failure of contaminated fused silica optics at 355 nm,” Proc. SPIE 3047, 978-986 (1997).

F. Y. Génin, K. Mitchlitsch, J. Furr, M. R. Kozwolski, and P. Krulevitch, “Laser induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126-139 (1997).
[CrossRef]

C. C. Widmayer, D. Milam, and S. P. de Szoeke, “Nonlinear formation of holographic images of obscurations in laser beams,”Appl. Opt. 36, 9342-9347 (1997).
[CrossRef]

1996 (1)

1989 (1)

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, “Laser induced damage and the role of self-focusing,” Opt. Eng. 28, 1133-1143 (1989).

1973 (1)

1972 (1)

M. D. Crips, N. L. Boiling, and G. Dubé, “Importance of the Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21, 364-366 (1972).
[CrossRef]

1971 (1)

I. A. Fersman and L. D. Khazov, “The effect of surface cleanliness of optical elements on their radiation resistance,” Sov. J. Opt. Technol. 37, 627-629 (1971) [Opt. Mekh. Prom. 37, 69-70 (1971)].

Proc. SPIE (2)

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351 nm and 527 nm laser initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129-136(2005).
[CrossRef]

Y. Zhao, J. Shao, H. He, and Z. Fan, “Laesr conditioning of high-reflective coatings and anti-reflective coatings at 1064 nm,” Proc. SPIE 5991, 5991171-6 (2005).

Appl. Opt. (5)

Appl. Phys. B (1)

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, B. Bertussi, M. Commandré, L. Gallais, J. Y. Natoli, I. Bertron, F. Malaise, and J. T. Donohue, “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 78, 447-452 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

M. D. Crips, N. L. Boiling, and G. Dubé, “Importance of the Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21, 364-366 (1972).
[CrossRef]

J. Appl. Phys. (1)

D. M. Kane and D. R. Halfpenny, “Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: a mechanism for systematic surface laser damage,” J. Appl. Phys. 87, 4548-4552 (2000).
[CrossRef]

Opt. Eng. (2)

J. Honig, “Cleanliness improvements of National Ignition Facility amplifiers as compared to previous large-scale lasers,” Opt. Eng. 43, 2904-2911 (2004).
[CrossRef]

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, “Laser induced damage and the role of self-focusing,” Opt. Eng. 28, 1133-1143 (1989).

Proc. SPIE (12)

S. Palmier, S. Garcia, L. Lamaignère, M. Loiseau, T. Donval, J. L. Rullier, I. Tovena, and L. Servant, “Surface particulate contamination of the LIL optical components and their evolution under laser irradiation,” Proc. SPIE 6403, 64030V1-10(2006).

D. Schirman, L. Bianchi, R. Courchinoux, A. Fornier, H. P. Jacquet, F. Jequier, A. Geille, J. C. Gommé, and T. Lonjaret, “LMJ target area design and engineering physics inside the LMJ target chamber,” Proc. SPIE 3492, 710-717 (1999).
[CrossRef]

F. Y. Génin, M. R. Kozlowski, and R. Brusasco, “Catastrophic failure of contaminated fused silica optics at 355 nm,” Proc. SPIE 3047, 978-986 (1997).

F. Y. Génin, K. Mitchlitsch, J. Furr, M. R. Kozwolski, and P. Krulevitch, “Laser induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126-139 (1997).
[CrossRef]

S. Papernov and A. W. Schmid, “Using nanoparticles as artificial defects in thin films: What we have learned about laser induced damage driven by localized absorbers?,” Proc. SPIE 6403, 64030D1-26 (2006).

P. Combis, F. Bonneau, G. Daval, and L. Lamaignère, “Laser induced damage simulations of absorbing materials under pulsed IR irradiation,” Proc. SPIE 3902, 317-324 (2000).
[CrossRef]

J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parahm, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56-68 (2002).
[CrossRef]

M. A. Norton, C. J. Stolz, E. E. Donohue, W. G. Hollingsworth, K. Listiyo, J. A. Pryatel, and R. P. Hackel, “Impact of contaminants on the laser damage threshold of 1ω HR coatings,” Proc. SPIE 5991, 5991OO1-9 (2005).

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Laser damage to optical components induced by surface chromium particles,” Proc. SPIE 5647, 156-165 (2005).
[CrossRef]

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 5991OR1-9 (2005).

J. Capoulade, J. Y. Natoli, S. Palmier, J. L. Rullier, and I. Tovena, “Influence of artificial defects size on the surface cleaning process,” Proc. SPIE 6403, 64030G1-10 (2007).

B. Martinez, V. Beau, S. Chico, S. Mainguy, and J. L. Rullier, “Numerical and experimental study of focal spot degradation induced by particles on surface optics,” Proc. SPIE 6403, 64030F1-9 (2006).

Sov. J. Opt. Technol. (1)

I. A. Fersman and L. D. Khazov, “The effect of surface cleanliness of optical elements on their radiation resistance,” Sov. J. Opt. Technol. 37, 627-629 (1971) [Opt. Mekh. Prom. 37, 69-70 (1971)].

The impact of laser damage on the lifetime of optical components in fusion lasers (1)

H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, “The impact of laser damage on the lifetime of optical components in fusion lasers ,” Proc. SPIE 5273, 312-324(2004).

Vide Sci. Technol. Appl. (1)

M. André, C. Cavailler, and F. Jéquier, “LMJ superlaser for inertial confinement fusion,” Vide Sci. Technol. Appl. 57, 13-28 (2003).

Other (1)

R. M. Wood, Laser Induced Damage in Optical Materials (Taylor & Francis, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of a sample containing 50 μm square dots, with an example of (b) an optical image and (c) a corresponding profile.

Fig. 2
Fig. 2

Topographical images of the 50 and 5 μm wide dots after laser irradiation at 15 J / cm 2 and their height profiles.

Fig. 3
Fig. 3

Crater depth (left) and crater diameter (right) of the hollow obtained around the dots after one irradiation at the indicated fluences.

Fig. 4
Fig. 4

Profiles of the (a)  50 μm and (b)  5 μm wide dots for different fluences of irradiation.

Fig. 5
Fig. 5

Central depth measured at the dot location after irra diation.

Fig. 6
Fig. 6

Photothermal absorption maps for 50 μm and 5 μm wide dots at fluences of 5, 10, 15, and 20 J / cm 2 .

Fig. 7
Fig. 7

Numerical simulations versus experimental results for the maximum depth.

Fig. 8
Fig. 8

Photothermal mapping of two 5 μm wide dots, after either 1 or 1000 irradiations at fluences of 15 J / cm 2 .

Fig. 9
Fig. 9

Images of three 50 μm wide dots after irradiation; (a) 10 shots at 40 J / cm 2 , (b) 1 shot at 5 J / cm 2 and 100 shots at 40 J / cm 2 , (c) 1 shot at 15 J / cm 2 and 100 shots at 40 J / cm 2 . Also shown are images of three 5 μm wide dots after irradiation; (d) 2 shots at 40 J / cm 2 , (e) 1 shot at 5 J / cm 2 and 100 shots at 40 J / cm 2 , (f) 1 shot at 15 J / cm 2 and 100 shots at 40 J / cm 2 .

Metrics