Abstract

Algol and Comptage de Photons Nouvelle Génération (CPNG) are new generation photon counting cameras developed for high angular resolution in the visible by means of optical aperture synthesis and speckle interferometry and for photon noise limited fast imaging of biological targets. They are intensified CCDs. They have been built to benefit from improvements in photonic commercial components, sensitivity, and personal computer workstations processing power. We present how we achieve optimal performances (sensitivity and spatiotemporal resolution) by the combination of proper optical and electronics design, and real-time elaborated data processing. The number of pixels is 532×516 and 10242 read at a frame rate of 262 and 100Hz for CPNG and Algol, respectively. The dark current is very low: 5.5×10-4e.pixel1.s1. The saturation flux is 7  photon events  /pixel/s. Quantum efficiencies reach up to 36% and 26% in the visible with the GaAsP photocathodes and in the red with the GaAs ones, respectively, thanks to the sensitivity of the photocathodes and to the photon centroiding algorithm; they are likely the highest values reported for intensified CCDs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Blazit, “A 40-mm photon counting camera,” Proc. SPIE 702, 259-263 (1987).
  2. R. Foy, “The photon counting camera CP40,” in Instrumentation for Ground-Based Optical Astronomy, Present and Future, Lick Observatory, eds. (Springer-Verlag, 1988), pp. 589.
    [CrossRef]
  3. D. Mourard, L. Abe, A. Domiciano de Souza, D. Bonneau, A. Blazit, F. Vakili, and P. Stee, “Status report on the GI2T interferometer,” Proc. SPIE 4838, 9 (2003).
    [CrossRef]
  4. M. Tallon, A. Baranne, A. Blazit, F.-C. Foy, R. Foy, I. Tallon-Bosc, and E. Thiébaut, “SPID, a high spectral resolution diffraction limited camera,” Proc. SPIE 4007, 962 (2000).
    [CrossRef]
  5. D. Mourard, D. Bonneau, J. M. Clausse, F. Hénault, A. Marcotto, A. Blazit, S. Bosio, Y. Bresson, T. ten Brummelaar, P. Kervella, S. Lagarde, H. A. McAlister, A. Mérand, G. Merlin, N. Nardetto, R. Petrov, A. Roussel, K. Rousselet-Perraut, P. Stee, J. Sturmann, L. Sturmann, and I. Tallon-Bosc, “VEGA: a visible spectrograph and polarimeter for CHARA,” Proc. SPIE 6268, 626803-1-11(2006).
  6. P. Stee, D. Mourard, D. Bonneau, P. Berlioz-Arthaud, A. Domiciano de Souza, R. Foy, P. Harmanec, S. Jankov, P. Kervella, P. Koubsky, S. Lagarde, J.-B. Le Bouquin, P. Mathias, A. Mérand, N. Nardetto, R. G. Petrov, K. Rousselet-Perraut, C. Stehle, and G. Weigelt, “VEGA: a visible spectrograph and polarimeter for CHARA--science cases description,” Proc. SPIE 6268, 62683R-1-22 (2006).
  7. R. Foy, D. Bonneau, and A. Blazit, “The multiple QSO PG1115 + 08--A fifth component?,” Astron. Astrophys. 149, L13-L16(1985).
  8. R. S. Negrin and C. H. Contag, “In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease,” Nat. Rev. Immun. 6, 484-490 (2006).
    [CrossRef]
  9. A. Roda, P. Pasini, M. Mirasoli, E. Michelini, and M. Guardigli, “Biotechnological applications of bioluminescence and chemiluminescence,” Trends Biotechnol. 22, 295-303 (2004).
    [CrossRef] [PubMed]
  10. L. F. Greer, III and A. A. Szalay, “Imaging of light emission from the expression of luciferases in living cells and organisms: a review,” J. Lumin. 17, 43-74 (2002).
    [CrossRef]
  11. R. T. Sadikot and T. S. Blackwell, “Bioluminescence imaging,” Proc. Am. Thorac. Soc. 2, 537-540 (2005).
    [CrossRef] [PubMed]
  12. P. Maechler, H. Wang, and C. B. Wollheim, “Continuous monitoring of ATP levels in living insulin secreting cells expressing cytosolic firefly luciferase,” FEBS Lett. 422, 328-332(1998).
    [CrossRef] [PubMed]
  13. H. J. Kennedy, A. E. Pouli, E. K. Ainscow, L. S. Jouaville, R. Rizzuto, and G. A. Rutter, “Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria,” J. Biol. Chem. 274, 13281-13291 (1999).
    [CrossRef] [PubMed]
  14. J.-L. Gach, O. Hernandez, J. Boulesteix, P. Amram, O. Boissin, C. Carignan, O. Garrido, M. Marcelin, G. Östlin, H. Plana, and R. Rampazzo, “Fabry-Pérot observations using a new GaAs photon-counting system,” in Scientific Detectors for Astronomy, The Beginning of a New Era, P. Amico, J. W. Beletic, and J. E. Beletic, eds. (Kluwer Academic, 2002), pp. 335-339.
  15. P. Jerram, P. Pool, R. Bell, D. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. Heyes, “The LLLCCD: low light imaging without the need for an intensifier,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, (SPIE, 2001), pp. 178-186.
  16. M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227-1232 (2003).
    [CrossRef]
  17. A. G. Basden, C. A. Haniff, and C. D. MacKay, “Photon counting strategies with low-light level CCDs,” Mon. Not. R. Astron. Soc. 345, 985-991 (2003).
    [CrossRef]
  18. O. Madelung, M. Schulz, and H. Weiss, “Intrinsic properties of group IV elements and III-V, II-VI, and I-VII compounds,” in Landolt-Bornstei, New Series, Group III (Springer, 1987).
  19. C. G. Coates, D. J. Denvir, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Optimizing low-light microscopy with back-illuminated electron multiplying charge-coupled device: enhanced sensitivity, speed, and resolution,” J. Biomed. Opt. 9, 1244-1252 (2004).
    [CrossRef] [PubMed]
  20. J.-L. Gach, C. Guillaume, O. Boissin, and C. Cavadore, “First results of an L3CCD in photon counting mode,” in Astrophysics and Space Science Library (2004), pp. 611-614.
    [CrossRef]
  21. E. Thiébaut, “Speckle interferometry with a photon-counting detector,” Astron. Astrophys. 284, 340-348 (1994).
  22. E. Thiébaut, “Avoiding the photon-counting hole in speckle imaging by means of cross-correlation techniques,” J. Opt. Soc. Am. A 14, 122-130 (1997).
    [CrossRef]
  23. R. Michel, J. Fordham, and H. Kawakami, “Fixed pattern noise in high-resolution, CCD readout photon-counting detectors,” Mon. Not. R. Astron. Soc. 292, 611-620 (1997).
  24. J. J. Moré and D. C. Sorensen, “Computing a trust region step,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 4, 553-572 (1983).
  25. M. K. Carter, R. Cutler, B. E. Patchett, P. D. Read, N. R. Waltham, and I. G. van Breda, “Transputer-based image photon-counting detector,” in Instrumentation in Astronomy VII, Proc. SPIE 1235, 644-656 (1990).

2006 (3)

D. Mourard, D. Bonneau, J. M. Clausse, F. Hénault, A. Marcotto, A. Blazit, S. Bosio, Y. Bresson, T. ten Brummelaar, P. Kervella, S. Lagarde, H. A. McAlister, A. Mérand, G. Merlin, N. Nardetto, R. Petrov, A. Roussel, K. Rousselet-Perraut, P. Stee, J. Sturmann, L. Sturmann, and I. Tallon-Bosc, “VEGA: a visible spectrograph and polarimeter for CHARA,” Proc. SPIE 6268, 626803-1-11(2006).

P. Stee, D. Mourard, D. Bonneau, P. Berlioz-Arthaud, A. Domiciano de Souza, R. Foy, P. Harmanec, S. Jankov, P. Kervella, P. Koubsky, S. Lagarde, J.-B. Le Bouquin, P. Mathias, A. Mérand, N. Nardetto, R. G. Petrov, K. Rousselet-Perraut, C. Stehle, and G. Weigelt, “VEGA: a visible spectrograph and polarimeter for CHARA--science cases description,” Proc. SPIE 6268, 62683R-1-22 (2006).

R. S. Negrin and C. H. Contag, “In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease,” Nat. Rev. Immun. 6, 484-490 (2006).
[CrossRef]

2005 (1)

R. T. Sadikot and T. S. Blackwell, “Bioluminescence imaging,” Proc. Am. Thorac. Soc. 2, 537-540 (2005).
[CrossRef] [PubMed]

2004 (2)

A. Roda, P. Pasini, M. Mirasoli, E. Michelini, and M. Guardigli, “Biotechnological applications of bioluminescence and chemiluminescence,” Trends Biotechnol. 22, 295-303 (2004).
[CrossRef] [PubMed]

C. G. Coates, D. J. Denvir, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Optimizing low-light microscopy with back-illuminated electron multiplying charge-coupled device: enhanced sensitivity, speed, and resolution,” J. Biomed. Opt. 9, 1244-1252 (2004).
[CrossRef] [PubMed]

2003 (3)

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227-1232 (2003).
[CrossRef]

A. G. Basden, C. A. Haniff, and C. D. MacKay, “Photon counting strategies with low-light level CCDs,” Mon. Not. R. Astron. Soc. 345, 985-991 (2003).
[CrossRef]

D. Mourard, L. Abe, A. Domiciano de Souza, D. Bonneau, A. Blazit, F. Vakili, and P. Stee, “Status report on the GI2T interferometer,” Proc. SPIE 4838, 9 (2003).
[CrossRef]

2002 (1)

L. F. Greer, III and A. A. Szalay, “Imaging of light emission from the expression of luciferases in living cells and organisms: a review,” J. Lumin. 17, 43-74 (2002).
[CrossRef]

2000 (1)

M. Tallon, A. Baranne, A. Blazit, F.-C. Foy, R. Foy, I. Tallon-Bosc, and E. Thiébaut, “SPID, a high spectral resolution diffraction limited camera,” Proc. SPIE 4007, 962 (2000).
[CrossRef]

1999 (1)

H. J. Kennedy, A. E. Pouli, E. K. Ainscow, L. S. Jouaville, R. Rizzuto, and G. A. Rutter, “Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria,” J. Biol. Chem. 274, 13281-13291 (1999).
[CrossRef] [PubMed]

1998 (1)

P. Maechler, H. Wang, and C. B. Wollheim, “Continuous monitoring of ATP levels in living insulin secreting cells expressing cytosolic firefly luciferase,” FEBS Lett. 422, 328-332(1998).
[CrossRef] [PubMed]

1997 (2)

R. Michel, J. Fordham, and H. Kawakami, “Fixed pattern noise in high-resolution, CCD readout photon-counting detectors,” Mon. Not. R. Astron. Soc. 292, 611-620 (1997).

E. Thiébaut, “Avoiding the photon-counting hole in speckle imaging by means of cross-correlation techniques,” J. Opt. Soc. Am. A 14, 122-130 (1997).
[CrossRef]

1994 (1)

E. Thiébaut, “Speckle interferometry with a photon-counting detector,” Astron. Astrophys. 284, 340-348 (1994).

1990 (1)

M. K. Carter, R. Cutler, B. E. Patchett, P. D. Read, N. R. Waltham, and I. G. van Breda, “Transputer-based image photon-counting detector,” in Instrumentation in Astronomy VII, Proc. SPIE 1235, 644-656 (1990).

1987 (1)

A. Blazit, “A 40-mm photon counting camera,” Proc. SPIE 702, 259-263 (1987).

1985 (1)

R. Foy, D. Bonneau, and A. Blazit, “The multiple QSO PG1115 + 08--A fifth component?,” Astron. Astrophys. 149, L13-L16(1985).

1983 (1)

J. J. Moré and D. C. Sorensen, “Computing a trust region step,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 4, 553-572 (1983).

Astron. Astrophys. (2)

R. Foy, D. Bonneau, and A. Blazit, “The multiple QSO PG1115 + 08--A fifth component?,” Astron. Astrophys. 149, L13-L16(1985).

E. Thiébaut, “Speckle interferometry with a photon-counting detector,” Astron. Astrophys. 284, 340-348 (1994).

FEBS Lett. (1)

P. Maechler, H. Wang, and C. B. Wollheim, “Continuous monitoring of ATP levels in living insulin secreting cells expressing cytosolic firefly luciferase,” FEBS Lett. 422, 328-332(1998).
[CrossRef] [PubMed]

IEEE Trans. Electron Devices (1)

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227-1232 (2003).
[CrossRef]

Instrumentation in Astronomy VII, Proc. SPIE (1)

M. K. Carter, R. Cutler, B. E. Patchett, P. D. Read, N. R. Waltham, and I. G. van Breda, “Transputer-based image photon-counting detector,” in Instrumentation in Astronomy VII, Proc. SPIE 1235, 644-656 (1990).

J. Biol. Chem. (1)

H. J. Kennedy, A. E. Pouli, E. K. Ainscow, L. S. Jouaville, R. Rizzuto, and G. A. Rutter, “Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria,” J. Biol. Chem. 274, 13281-13291 (1999).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

C. G. Coates, D. J. Denvir, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Optimizing low-light microscopy with back-illuminated electron multiplying charge-coupled device: enhanced sensitivity, speed, and resolution,” J. Biomed. Opt. 9, 1244-1252 (2004).
[CrossRef] [PubMed]

J. Lumin. (1)

L. F. Greer, III and A. A. Szalay, “Imaging of light emission from the expression of luciferases in living cells and organisms: a review,” J. Lumin. 17, 43-74 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

Mon. Not. R. Astron. Soc. (2)

R. Michel, J. Fordham, and H. Kawakami, “Fixed pattern noise in high-resolution, CCD readout photon-counting detectors,” Mon. Not. R. Astron. Soc. 292, 611-620 (1997).

A. G. Basden, C. A. Haniff, and C. D. MacKay, “Photon counting strategies with low-light level CCDs,” Mon. Not. R. Astron. Soc. 345, 985-991 (2003).
[CrossRef]

Nat. Rev. Immun. (1)

R. S. Negrin and C. H. Contag, “In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease,” Nat. Rev. Immun. 6, 484-490 (2006).
[CrossRef]

Proc. Am. Thorac. Soc. (1)

R. T. Sadikot and T. S. Blackwell, “Bioluminescence imaging,” Proc. Am. Thorac. Soc. 2, 537-540 (2005).
[CrossRef] [PubMed]

Proc. SPIE (5)

A. Blazit, “A 40-mm photon counting camera,” Proc. SPIE 702, 259-263 (1987).

D. Mourard, L. Abe, A. Domiciano de Souza, D. Bonneau, A. Blazit, F. Vakili, and P. Stee, “Status report on the GI2T interferometer,” Proc. SPIE 4838, 9 (2003).
[CrossRef]

M. Tallon, A. Baranne, A. Blazit, F.-C. Foy, R. Foy, I. Tallon-Bosc, and E. Thiébaut, “SPID, a high spectral resolution diffraction limited camera,” Proc. SPIE 4007, 962 (2000).
[CrossRef]

D. Mourard, D. Bonneau, J. M. Clausse, F. Hénault, A. Marcotto, A. Blazit, S. Bosio, Y. Bresson, T. ten Brummelaar, P. Kervella, S. Lagarde, H. A. McAlister, A. Mérand, G. Merlin, N. Nardetto, R. Petrov, A. Roussel, K. Rousselet-Perraut, P. Stee, J. Sturmann, L. Sturmann, and I. Tallon-Bosc, “VEGA: a visible spectrograph and polarimeter for CHARA,” Proc. SPIE 6268, 626803-1-11(2006).

P. Stee, D. Mourard, D. Bonneau, P. Berlioz-Arthaud, A. Domiciano de Souza, R. Foy, P. Harmanec, S. Jankov, P. Kervella, P. Koubsky, S. Lagarde, J.-B. Le Bouquin, P. Mathias, A. Mérand, N. Nardetto, R. G. Petrov, K. Rousselet-Perraut, C. Stehle, and G. Weigelt, “VEGA: a visible spectrograph and polarimeter for CHARA--science cases description,” Proc. SPIE 6268, 62683R-1-22 (2006).

SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. (1)

J. J. Moré and D. C. Sorensen, “Computing a trust region step,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 4, 553-572 (1983).

Trends Biotechnol. (1)

A. Roda, P. Pasini, M. Mirasoli, E. Michelini, and M. Guardigli, “Biotechnological applications of bioluminescence and chemiluminescence,” Trends Biotechnol. 22, 295-303 (2004).
[CrossRef] [PubMed]

Other (5)

R. Foy, “The photon counting camera CP40,” in Instrumentation for Ground-Based Optical Astronomy, Present and Future, Lick Observatory, eds. (Springer-Verlag, 1988), pp. 589.
[CrossRef]

O. Madelung, M. Schulz, and H. Weiss, “Intrinsic properties of group IV elements and III-V, II-VI, and I-VII compounds,” in Landolt-Bornstei, New Series, Group III (Springer, 1987).

J.-L. Gach, O. Hernandez, J. Boulesteix, P. Amram, O. Boissin, C. Carignan, O. Garrido, M. Marcelin, G. Östlin, H. Plana, and R. Rampazzo, “Fabry-Pérot observations using a new GaAs photon-counting system,” in Scientific Detectors for Astronomy, The Beginning of a New Era, P. Amico, J. W. Beletic, and J. E. Beletic, eds. (Kluwer Academic, 2002), pp. 335-339.

P. Jerram, P. Pool, R. Bell, D. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. Heyes, “The LLLCCD: low light imaging without the need for an intensifier,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, (SPIE, 2001), pp. 178-186.

J.-L. Gach, C. Guillaume, O. Boissin, and C. Cavadore, “First results of an L3CCD in photon counting mode,” in Astrophysics and Space Science Library (2004), pp. 611-614.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Left: Hardware design of a CPNG. Right: an assembled (top) and a dismantled (bottom) CPNG camera.

Fig. 2
Fig. 2

Histogram of the intensities of the peaks detected in the CPNG readout CCD images.

Fig. 3
Fig. 3

Photon event shape. Left: measured mean 2D spatial brightness distribution of photon events on the readout CCD of CPNG. Right: mean 1D profile of real events (thick gray curve) and B-spline function (thin black curve).

Fig. 4
Fig. 4

Thermal current as a function of the temperature of the photocathode of the first light amplifier. Squares: measurements.

Fig. 5
Fig. 5

Spatiotemporal correlation profiles. The curves show the average level of correlation of detected events as a function of the spatial separation and for different temporal separations Δ t given in the number of 3.8 ms frames.

Fig. 6
Fig. 6

Single ICCD image showing a large event burst in the top right corner due to an ion.

Fig. 7
Fig. 7

Two-dimensional mean spatial autocorrelations of photon events. Left: raw correlation. Right: some possible overlapping of the photon events is taken into account, which reduces the photon-counting hole to its limit of 3 × 3 . Hence the saturation flux (the possible detection area for a single event) is improved.

Fig. 8
Fig. 8

QE of CPNG/Algol cameras as functions of the wavelength. The squares and triangles indicate our measurements and the curves are the spectral responses of the photocathodes provided by the constructors data sheets and scaled to fit our data. The precision comes from the sources fluxes: 2%.

Fig. 9
Fig. 9

Mean autocorrelation of detected event positions under flat field and computed with a resolution of 1 / 20 th of a CCD pixel. Axes are labeled in pixel units. The accurate event positions were determined by a maximum likelihood fit followed by histogram equalization of the subpixel positions to avoid the bias of the centering method. The honeycomb structure of the microchannel arrays (seven fibers per pack) is clearly seen in the one squared CCD pixel zoomed area. The dark part around the coordinates ( 0 , 0 ) is due to the photon-counting hole.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

s ( Δ x ) = Δ x - a / 2 Δ x + a / 2 exp ( - log 16 u 2 ω 2 ) d u = 1 2 [ erfc ( log 16 ω ( Δ x - a 2 ) ) - erfc ( log 16 ω ( Δ x + a 2 ) ) ] ,
s ( Δ x ) b ( Δ x / w )
with b ( u ) = { 2 / 3 + ( u / 2 - 1 ) u 2 for     | u | 1 1 / 6 ( 2 - u ) 3 for     1 | u | 2 0 for     | u | 2
FWHM b = 4 3 + 8 3 cos [ π 3 + 1 3 tan - 1 ( 3 7 ) ] 1.445 .
d ( x ) = m ( x ) + e ( x ) ,
m ( x ) = k α k s ( x - x k ) ,
χ 2 = 1 σ CCD 2 x [ d ( x ) - m ( x ) ] 2 ,
χ local 2 ( x k , α k ) = 1 σ CCD 2 x S k [ d ( x ) - α k s ( x - x k ) ] 2 ,
x S k x - x k S ,
χ local 2 ( x k , α k ) = 1 σ CCD 2 Δ x S [ d ( x k + Δ x ) - α k s ( Δ x ) ] 2 .
α k + ( x k ) = Δ x S d ( x k + Δ x ) s ( Δ x ) Δ x S s ( Δ x ) 2 .
d s ( x ) = Δ x S d ( x + Δ x ) s ( Δ x ) ,
SNR d = d ( x k ) var [ d ( x k ) ] = α k σ CCD s ( 0 ) .
var [ d s ( x ) ] = σ CCD 2 Δ x S s ( Δ x ) 2 ,
SNR d s = d s ( x k ) var [ d s ( x k ) ] = α k σ CCD Δ x S s ( Δ x ) 2 .
SNR d s SNR d = Δ x S ( s ( Δ x ) s ( 0 ) ) 2 1.5 ,
Pr { d ( x ) ϵ } = 1 2 erfc ( ϵ 2 σ CCD ) .
σ CCD 2 χ local 2 ( x k , α k ) = x S k d ( x ) 2 - 2 α k x S k d ( x ) s ( x - x k ) + α k 2 x S k s ( x - x k ) 2 .
x k + = arg max x k x S k d ( x ) s ( x - x k ) x S k s ( x - x k ) 2 .
n = N c exp ( E F - E c k B T ) ,
E F - E c = 1 2 [ k B T log ( N v N c ) - E g ( 0 ° K ) ] ,
N ˜ N exp ( - β N ) ,
s ( Δ x ) = s ( Δ x ) - s ( Δ x ) Δ x S
η ( λ ) = η ph ( λ ) η loss ,
η loss = η mc η ion η sat ,

Metrics