Abstract

We have improved a highly coherent x-ray laser at 13.9nm using an oscillator–amplifier configuration. To improve a high-brilliance x-ray laser, we adopted traveling wave pumping for the amplifier target and rotated the amplifier target 34mrad in the counterclockwise direction. Thereby, a seed x-ray laser can be amplified by medium plasma of the amplifier target with a high gain coefficient. The amplified x-ray laser has the output energy of 1.3μJ, corresponding to a large photon flux of 6.5×1010  photons/pulse and a high peak brilliance of 5×1026 photons/(smm2mrad20.01%  bandwidth).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, and T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110-113 (1985).
    [Crossref] [PubMed]
  2. H. Daido, “Review of soft x-ray laser development,” Rep. Prog. Phys. 65, 1513-1576 (2002).
    [Crossref]
  3. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219-221 (1985).
    [Crossref]
  4. P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnuer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748-2751 (1997).
    [Crossref]
  5. J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, “Demonstration of x-ray amplification in transient gain nickel-like palladium scheme,” Phys. Rev. Lett. 80, 2825-2828 (1998).
    [Crossref]
  6. B. M. Luther, Y. Wang, M. A. Larotonda, D. Alessi, M. Berrill, M. C. Marconi, J. J. Rocca, and V. N. Shlyaptsev, “Saturated high-repetition-rate 18.9−nm tabletop laser in nickellike molybdenum,” Opt. Lett. 30, 165-167 (2005).
    [Crossref] [PubMed]
  7. R. Keenan, J. Dunn, P. K. Patel, D. F. Price, R. F. Smith, and V. N. Shlyaptsev, “High-repetition-rate grazing-incidence pumped x-ray laser operating at 18.9 nm,” Phys. Rev. Lett. 94, 103901 (2005).
    [Crossref] [PubMed]
  8. R. Z. Tai, K. Namikawa, A. Sawada, M. Kishimoto, M. Tanaka, P. Lu, K. Nagashima, H. Maruyama, and M. Ando, “Picosecond view of microscopic-scale polarization clusters in paraelectric BaTiO3,” Phys. Rev. Lett. 93, 087601 (2004).
    [Crossref] [PubMed]
  9. H. Tang, O. Guilbaud, G. Jamelot, D. Ros, A. Klisnick, D. Joyeux, D. Phalippou, M. Kado, M. Nishikino, M. Kishimoto, K. Sukegawa, M. Ishino, K. Nagashima, and H. Daido, “Diagnostics of laser-induced plasma with soft x-ray (13.9 nm) bi-mirror interference microscopy,” Appl. Phys. B 78, 975-977(2004).
    [Crossref]
  10. R. F. Smith, J. Dunn, J. Nilsen, V. N. Shlyaptsev, S. Moon, J. Filevich, J. J. Rocca, M. C. Marconi, J. R. Hunter, and T. W. Barbee, Jr., “Picosecond x-ray laser interferometry of dense plasmas,” Phys. Rev. Lett. 89, 065004 (2002).
    [Crossref] [PubMed]
  11. A.-S. Morlens, J. Gautier, G. Rey, P. Zeitoun, J.-P. Caumes, M. Kos-Rosset, H. Merdji, S. Kazamias, K. Cassou, and M. Fajardo, “Submicrometer digital in-line holographic microscopy at 32 nm with high-order harmonics,” Opt. Lett. 31, 3095-3097 (2006).
    [Crossref] [PubMed]
  12. C. L. S. Lewis, D. Neely, D. M. O'Neill, J. O. Uhomoibhi, M. H. Key, Y. Al Hadithi, G. J. Tallents, and S. A. Ramsden, “An injector/amplifier double target configuration for the Ne-like Ge x-ray laser scheme,” Opt. Commun. 91, 71-76 (1992).
    [Crossref]
  13. R. E. Burge, G. E. Slark, M. T. Browne, X.-C. Yuan, P. Charalambous, X.-H. Cheng, C. L. S. Lewis, A. MacPhee, and D. Neely, “Spatial coherence of x-ray laser emission from neonlike germanium after prepulse,” J. Opt. Soc. Am B 14, 2742-2751 (1997).
    [Crossref]
  14. H. Daido, S. Sebban, N. Sakaya, Y. Tohyama, T. Norimatsu, K. Mima, Y. Kato, S. Wang, Y. Gu, G. Huang, H. Tang, K. Murai, R. Butzbach, I. Uschmann, M. Vollbrecht, and E. Förster, “Experimental characterization of short-wavelength Ni-like soft-x-ray lasing toward the water window,” J. Opt Soc. Am B 16, 2295-2299 (1999).
    [Crossref]
  15. G. Cairns, C. L. S. Lewis, A. G. MacPhee, D. Neely, M. Holden, J. Krishnan, G. J. Tallents, M. H. Key, P. N. Norreys, C. G. Smith, J. Zhang, P. B. Holden, G. J. Pert, J. Plowes, and S. A. Ramsden, “Preliminary studies of radiation coupling between remote soft x-ray laser amplifiers,” Appl. Phys. B 58, 51-56 (1994).
    [Crossref]
  16. R. Kodama, D. Neely, Y. Kato, H. Daido, K. Murai, G. Yuan, A. MacPhee, and C. L. S. Lewis, “Generation of small-divergence soft x-ray laser by plasma waveguiding with a curved target,” Phys. Rev. Lett. 733215-3218 (1994).
    [Crossref] [PubMed]
  17. Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Atwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 63, 033802 (2001).
    [Crossref]
  18. M. Tanaka, M. Nishikino, T. Kawachi, N. Hasegawa, M. Kado, M. Kishimoto, K. Nagashima, and Y. Katom, “X-ray laser beam with diffraction-limited divergence generated with two gain media,” Opt. Lett. 28, 1680-1682 (2003).
    [Crossref] [PubMed]
  19. M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68, 061802 (2003).
    [Crossref]
  20. M. Nishikino, M. Tanaka, Y. Ochi, M. Kishimoto, M. Ishino, N. Hasegawa, M. Kado, K. Sukegawa, T. Kawachi, and K. Nagashima, “Demonstration of a fully spatial coherent x-ray laser at 13.9 nm,” IEEE J. Sel. Top. Quantum Electron. 10, 1382-1387 (2004).
    [Crossref]
  21. Ph. Zeitoun, G. Faivre, S. Sebban, T. Mocek, A. Hallou, M. Fajardo, D. Aubert, Ph. Balcou, F. Burgy, D. Douillet, S. Kazamias, G. de Lachèze-Murel, T. Lefrou, S. le Pape, P. Mercère, H. Merdji, A. S. Morlens, J. P. Rousseau, and C. Valentin, “A high-intensity highly coherent soft x-ray femtosecond laser seeded by a high harmonic beam,” Nature 431, 426-429 (2004).
    [Crossref] [PubMed]
  22. Y. Wang, E. Granados, M. A. Larotonda, M. Berrill, B. M. Luther, D. Patel, C. S. Menoni, and J. J. Rocca, “High-brightness injection-seeded soft-x-ray-laser amplifier using a solid target,” Phys. Rev. Lett. . 97, 123901 (2006).
    [Crossref] [PubMed]
  23. N. Hasegawa, T. Kawachi, A. Sasaki, M. Kishimoto, K. Sukegawa, M. Tanaka, R. Z. Tai, Y. Ochi, M. Nishikino, K. Nagashima, and Y. Kato, “Direct measurement of the temporal profile of the amplification gain of the transient collisional excitation neonlike manganese x-ray laser medium,” Phys. Rev. A 76, 043805 (2007).
    [Crossref]
  24. The European X-Ray Free-Electron Laser Technical design report (M. Altarelli, R. Brinkmann, M. Chergui, W. Decking, B. Dobson, S. Düsterer, G. Grübel, W. Graeff, H. Graafsma, J. Hajdu, J. Marangos, J. Pflüger, H. Redlin, D. Riley, I. Robinson, J. Rossbach, A. Schwarz, K. Tiedtke, T. Tschentscher, I. Vartaniants, H. Wabnitz, H. Weise, R. Wichmann, K. Witte, A. Wolf, M. Wulff, and M. Yurkov, eds.), http://xfel.desy.de/tdr/tdr/index_eng.html.
  25. J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, and V. N. Shlyaptsev, “Gain saturation regime for laser-driven tabletop, transient Ni-like ion x-ray lasers,” Phys. Rev. Lett. 84, 4834-4837 (2000).
    [Crossref] [PubMed]
  26. R. Tommasini and E. E. Fill, “Effective traveling-wave excitation below the speed light,” Opt. Lett. 26, 689-691 (2001).
    [Crossref]
  27. T. Kawachi, M. Kado, M. Tanaka, A. Sasaki, N. Hasegawa, A. V. Kilpio, S. Namba, K. Nagashima, P. Lu, K. Takahashi, H. Tang, R. Tai, M. Kishimoto, M. Koike, H. Daido, and Y. Kato, “Gain saturation of nickel-like silver and tin x-ray lasers by use of a tabletop pumping laser system,” Phys. Rev. A 66, 033815 (2002).
    [Crossref]
  28. R. C. Elton, X-Ray Lasers (Academic, 1990).
  29. T. Kawachi, M. Kado, M. Tanaka, N. Hasegawa, K. Nagashima, K. Sukegawa, P. Lu, K. Takahashi, S. Namba, M. Koike, A. Nagashima, and Y. Kato, “Development of a pumping laser system for x-ray laser research,” Appl. Opt. 42, 2198-2205 (2003).
    [Crossref] [PubMed]
  30. H. Yoshida, E. Ishii, K. Sawai, R. Kodama, H. Fujita, Y. Kitagawa, S. Sakabe, N. Miyanaga, Y. Izawa, T. Yamanaka, and M. Fujita, “Broadband high-gain pre-amplifier system based on optical parametric chirped pulse amplifier for PW laser,” at The 4th Pacific Rim Conference on Lasers and Electro-Optics, 2001, CLEO/PACIFIC Rim 2001 1, 80-81(2001).
  31. K. Nagashima, M. Kishimoto, T. Kawachi, N. Hasegawa, M. Tanaka, Y. Ochi, M. Nishikino, K. Sukegawa, H. Yamatani, Y. Kunieda, and Y. Kato, “Recent advances of the x-ray laser research at APRC,” at X-Ray Lasers 2006: Proceedings of the 10th International Conference, August 20-25, Berlin, Germany (Springer Proceedings in Physics, 2006).
  32. S. Namba, N. Hasegawa, M. Nishikino, T. Kawachi, M. Kishimoto, K. Sukegawa, M. Tanaka, Y. Ochi, K. Takiyama, and K. Nagashima, “Enhancement of double auger decay probability in Xenon clusters irradiated with a soft-x-ray laser pulse,” Phys. Rev. Lett. 99, 043004 (2007).
    [Crossref] [PubMed]
  33. M. Tanaka, M. Nishikino, H. Yamatani, K. Nagashima, T. Kimura, Y. Furukawa, H. Murakami, S. Saito, N. Sarukura, H. Nishimura, K. Mima, Y. Kagamitani, D. Ehrentraut, and T. Fukuda, “Hydrothermal method grown large-sized zinc oxide single crystal as fast scintillator for future extreme ultraviolet lithography,” Appl. Phys. Lett. 91, 231117(2007).
    [Crossref]
  34. M. Nishikino, H. Kawazome, and K. Nagashima, “Generation of soft x-ray submicron beam using Fresnel phase zone plate,” Jpn. J. Appl. Phys. 47, 983-985 (2008).
    [Crossref]
  35. N. Hasegawa, T. Kawachi, T. Utsumi, A. Sasaki, M. Tanaka, M. Kado, K. Sukegawa, L. Peixiang, M. Kishimoto, T. Renzhong, K. Nagashima, M. Koike, H. Daido, and Y. Kato, “High-precision measurement of the wavelength of a nickel-like silver x-ray laser,” Jpn. J. Appl. Phys. 43, 2519-2522(2004).
    [Crossref]
  36. Y. Ochi, T. Kawachi, N. Hasegawa, A. Sasaki, K. Nagashima, K. Sukegawa, M. Kishimoto, M. Tanaka, M. Nishikino and M. Kado, “Measurement of temporal durations of transient collisional excitation x-ray lasers,” Appl. Phys. B 78, 961-963(2004).
    [Crossref]
  37. N. Ohnishi, M. Nishikino, and A. Sasaki, “Numerical analysis of plasma medium of collisional transient excited x ray lasers,” J. Phys. IV 133, 1193-1196 (2006).
  38. T. Kawachi, N. Hasegawa, M. Nishikino, Y. Ochi, M. Tanaka, T. Utsumi, and A. Sasaki, “Observation of density dip in a pre-formed plasma: toward axial pumping x-ray laser,” at X-Ray Lasers 2006: Proceedings of the 10th International Conference, August 20-25, Berlin, Germany (Springer Proceedings in Physics, 2006).

2008 (1)

M. Nishikino, H. Kawazome, and K. Nagashima, “Generation of soft x-ray submicron beam using Fresnel phase zone plate,” Jpn. J. Appl. Phys. 47, 983-985 (2008).
[Crossref]

2007 (3)

S. Namba, N. Hasegawa, M. Nishikino, T. Kawachi, M. Kishimoto, K. Sukegawa, M. Tanaka, Y. Ochi, K. Takiyama, and K. Nagashima, “Enhancement of double auger decay probability in Xenon clusters irradiated with a soft-x-ray laser pulse,” Phys. Rev. Lett. 99, 043004 (2007).
[Crossref] [PubMed]

M. Tanaka, M. Nishikino, H. Yamatani, K. Nagashima, T. Kimura, Y. Furukawa, H. Murakami, S. Saito, N. Sarukura, H. Nishimura, K. Mima, Y. Kagamitani, D. Ehrentraut, and T. Fukuda, “Hydrothermal method grown large-sized zinc oxide single crystal as fast scintillator for future extreme ultraviolet lithography,” Appl. Phys. Lett. 91, 231117(2007).
[Crossref]

N. Hasegawa, T. Kawachi, A. Sasaki, M. Kishimoto, K. Sukegawa, M. Tanaka, R. Z. Tai, Y. Ochi, M. Nishikino, K. Nagashima, and Y. Kato, “Direct measurement of the temporal profile of the amplification gain of the transient collisional excitation neonlike manganese x-ray laser medium,” Phys. Rev. A 76, 043805 (2007).
[Crossref]

2006 (3)

Y. Wang, E. Granados, M. A. Larotonda, M. Berrill, B. M. Luther, D. Patel, C. S. Menoni, and J. J. Rocca, “High-brightness injection-seeded soft-x-ray-laser amplifier using a solid target,” Phys. Rev. Lett. . 97, 123901 (2006).
[Crossref] [PubMed]

N. Ohnishi, M. Nishikino, and A. Sasaki, “Numerical analysis of plasma medium of collisional transient excited x ray lasers,” J. Phys. IV 133, 1193-1196 (2006).

A.-S. Morlens, J. Gautier, G. Rey, P. Zeitoun, J.-P. Caumes, M. Kos-Rosset, H. Merdji, S. Kazamias, K. Cassou, and M. Fajardo, “Submicrometer digital in-line holographic microscopy at 32 nm with high-order harmonics,” Opt. Lett. 31, 3095-3097 (2006).
[Crossref] [PubMed]

2005 (2)

B. M. Luther, Y. Wang, M. A. Larotonda, D. Alessi, M. Berrill, M. C. Marconi, J. J. Rocca, and V. N. Shlyaptsev, “Saturated high-repetition-rate 18.9−nm tabletop laser in nickellike molybdenum,” Opt. Lett. 30, 165-167 (2005).
[Crossref] [PubMed]

R. Keenan, J. Dunn, P. K. Patel, D. F. Price, R. F. Smith, and V. N. Shlyaptsev, “High-repetition-rate grazing-incidence pumped x-ray laser operating at 18.9 nm,” Phys. Rev. Lett. 94, 103901 (2005).
[Crossref] [PubMed]

2004 (6)

R. Z. Tai, K. Namikawa, A. Sawada, M. Kishimoto, M. Tanaka, P. Lu, K. Nagashima, H. Maruyama, and M. Ando, “Picosecond view of microscopic-scale polarization clusters in paraelectric BaTiO3,” Phys. Rev. Lett. 93, 087601 (2004).
[Crossref] [PubMed]

H. Tang, O. Guilbaud, G. Jamelot, D. Ros, A. Klisnick, D. Joyeux, D. Phalippou, M. Kado, M. Nishikino, M. Kishimoto, K. Sukegawa, M. Ishino, K. Nagashima, and H. Daido, “Diagnostics of laser-induced plasma with soft x-ray (13.9 nm) bi-mirror interference microscopy,” Appl. Phys. B 78, 975-977(2004).
[Crossref]

N. Hasegawa, T. Kawachi, T. Utsumi, A. Sasaki, M. Tanaka, M. Kado, K. Sukegawa, L. Peixiang, M. Kishimoto, T. Renzhong, K. Nagashima, M. Koike, H. Daido, and Y. Kato, “High-precision measurement of the wavelength of a nickel-like silver x-ray laser,” Jpn. J. Appl. Phys. 43, 2519-2522(2004).
[Crossref]

Y. Ochi, T. Kawachi, N. Hasegawa, A. Sasaki, K. Nagashima, K. Sukegawa, M. Kishimoto, M. Tanaka, M. Nishikino and M. Kado, “Measurement of temporal durations of transient collisional excitation x-ray lasers,” Appl. Phys. B 78, 961-963(2004).
[Crossref]

M. Nishikino, M. Tanaka, Y. Ochi, M. Kishimoto, M. Ishino, N. Hasegawa, M. Kado, K. Sukegawa, T. Kawachi, and K. Nagashima, “Demonstration of a fully spatial coherent x-ray laser at 13.9 nm,” IEEE J. Sel. Top. Quantum Electron. 10, 1382-1387 (2004).
[Crossref]

Ph. Zeitoun, G. Faivre, S. Sebban, T. Mocek, A. Hallou, M. Fajardo, D. Aubert, Ph. Balcou, F. Burgy, D. Douillet, S. Kazamias, G. de Lachèze-Murel, T. Lefrou, S. le Pape, P. Mercère, H. Merdji, A. S. Morlens, J. P. Rousseau, and C. Valentin, “A high-intensity highly coherent soft x-ray femtosecond laser seeded by a high harmonic beam,” Nature 431, 426-429 (2004).
[Crossref] [PubMed]

2003 (3)

2002 (3)

R. F. Smith, J. Dunn, J. Nilsen, V. N. Shlyaptsev, S. Moon, J. Filevich, J. J. Rocca, M. C. Marconi, J. R. Hunter, and T. W. Barbee, Jr., “Picosecond x-ray laser interferometry of dense plasmas,” Phys. Rev. Lett. 89, 065004 (2002).
[Crossref] [PubMed]

H. Daido, “Review of soft x-ray laser development,” Rep. Prog. Phys. 65, 1513-1576 (2002).
[Crossref]

T. Kawachi, M. Kado, M. Tanaka, A. Sasaki, N. Hasegawa, A. V. Kilpio, S. Namba, K. Nagashima, P. Lu, K. Takahashi, H. Tang, R. Tai, M. Kishimoto, M. Koike, H. Daido, and Y. Kato, “Gain saturation of nickel-like silver and tin x-ray lasers by use of a tabletop pumping laser system,” Phys. Rev. A 66, 033815 (2002).
[Crossref]

2001 (2)

R. Tommasini and E. E. Fill, “Effective traveling-wave excitation below the speed light,” Opt. Lett. 26, 689-691 (2001).
[Crossref]

Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Atwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 63, 033802 (2001).
[Crossref]

2000 (1)

J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, and V. N. Shlyaptsev, “Gain saturation regime for laser-driven tabletop, transient Ni-like ion x-ray lasers,” Phys. Rev. Lett. 84, 4834-4837 (2000).
[Crossref] [PubMed]

1999 (1)

H. Daido, S. Sebban, N. Sakaya, Y. Tohyama, T. Norimatsu, K. Mima, Y. Kato, S. Wang, Y. Gu, G. Huang, H. Tang, K. Murai, R. Butzbach, I. Uschmann, M. Vollbrecht, and E. Förster, “Experimental characterization of short-wavelength Ni-like soft-x-ray lasing toward the water window,” J. Opt Soc. Am B 16, 2295-2299 (1999).
[Crossref]

1998 (1)

J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, “Demonstration of x-ray amplification in transient gain nickel-like palladium scheme,” Phys. Rev. Lett. 80, 2825-2828 (1998).
[Crossref]

1997 (2)

R. E. Burge, G. E. Slark, M. T. Browne, X.-C. Yuan, P. Charalambous, X.-H. Cheng, C. L. S. Lewis, A. MacPhee, and D. Neely, “Spatial coherence of x-ray laser emission from neonlike germanium after prepulse,” J. Opt. Soc. Am B 14, 2742-2751 (1997).
[Crossref]

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnuer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748-2751 (1997).
[Crossref]

1994 (2)

G. Cairns, C. L. S. Lewis, A. G. MacPhee, D. Neely, M. Holden, J. Krishnan, G. J. Tallents, M. H. Key, P. N. Norreys, C. G. Smith, J. Zhang, P. B. Holden, G. J. Pert, J. Plowes, and S. A. Ramsden, “Preliminary studies of radiation coupling between remote soft x-ray laser amplifiers,” Appl. Phys. B 58, 51-56 (1994).
[Crossref]

R. Kodama, D. Neely, Y. Kato, H. Daido, K. Murai, G. Yuan, A. MacPhee, and C. L. S. Lewis, “Generation of small-divergence soft x-ray laser by plasma waveguiding with a curved target,” Phys. Rev. Lett. 733215-3218 (1994).
[Crossref] [PubMed]

1992 (1)

C. L. S. Lewis, D. Neely, D. M. O'Neill, J. O. Uhomoibhi, M. H. Key, Y. Al Hadithi, G. J. Tallents, and S. A. Ramsden, “An injector/amplifier double target configuration for the Ne-like Ge x-ray laser scheme,” Opt. Commun. 91, 71-76 (1992).
[Crossref]

1985 (2)

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, and T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110-113 (1985).
[Crossref] [PubMed]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219-221 (1985).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (3)

Y. Ochi, T. Kawachi, N. Hasegawa, A. Sasaki, K. Nagashima, K. Sukegawa, M. Kishimoto, M. Tanaka, M. Nishikino and M. Kado, “Measurement of temporal durations of transient collisional excitation x-ray lasers,” Appl. Phys. B 78, 961-963(2004).
[Crossref]

H. Tang, O. Guilbaud, G. Jamelot, D. Ros, A. Klisnick, D. Joyeux, D. Phalippou, M. Kado, M. Nishikino, M. Kishimoto, K. Sukegawa, M. Ishino, K. Nagashima, and H. Daido, “Diagnostics of laser-induced plasma with soft x-ray (13.9 nm) bi-mirror interference microscopy,” Appl. Phys. B 78, 975-977(2004).
[Crossref]

G. Cairns, C. L. S. Lewis, A. G. MacPhee, D. Neely, M. Holden, J. Krishnan, G. J. Tallents, M. H. Key, P. N. Norreys, C. G. Smith, J. Zhang, P. B. Holden, G. J. Pert, J. Plowes, and S. A. Ramsden, “Preliminary studies of radiation coupling between remote soft x-ray laser amplifiers,” Appl. Phys. B 58, 51-56 (1994).
[Crossref]

Appl. Phys. Lett. (1)

M. Tanaka, M. Nishikino, H. Yamatani, K. Nagashima, T. Kimura, Y. Furukawa, H. Murakami, S. Saito, N. Sarukura, H. Nishimura, K. Mima, Y. Kagamitani, D. Ehrentraut, and T. Fukuda, “Hydrothermal method grown large-sized zinc oxide single crystal as fast scintillator for future extreme ultraviolet lithography,” Appl. Phys. Lett. 91, 231117(2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Nishikino, M. Tanaka, Y. Ochi, M. Kishimoto, M. Ishino, N. Hasegawa, M. Kado, K. Sukegawa, T. Kawachi, and K. Nagashima, “Demonstration of a fully spatial coherent x-ray laser at 13.9 nm,” IEEE J. Sel. Top. Quantum Electron. 10, 1382-1387 (2004).
[Crossref]

J. Opt Soc. Am B (1)

H. Daido, S. Sebban, N. Sakaya, Y. Tohyama, T. Norimatsu, K. Mima, Y. Kato, S. Wang, Y. Gu, G. Huang, H. Tang, K. Murai, R. Butzbach, I. Uschmann, M. Vollbrecht, and E. Förster, “Experimental characterization of short-wavelength Ni-like soft-x-ray lasing toward the water window,” J. Opt Soc. Am B 16, 2295-2299 (1999).
[Crossref]

J. Opt. Soc. Am B (1)

R. E. Burge, G. E. Slark, M. T. Browne, X.-C. Yuan, P. Charalambous, X.-H. Cheng, C. L. S. Lewis, A. MacPhee, and D. Neely, “Spatial coherence of x-ray laser emission from neonlike germanium after prepulse,” J. Opt. Soc. Am B 14, 2742-2751 (1997).
[Crossref]

J. Phys. IV (1)

N. Ohnishi, M. Nishikino, and A. Sasaki, “Numerical analysis of plasma medium of collisional transient excited x ray lasers,” J. Phys. IV 133, 1193-1196 (2006).

Jpn. J. Appl. Phys. (2)

M. Nishikino, H. Kawazome, and K. Nagashima, “Generation of soft x-ray submicron beam using Fresnel phase zone plate,” Jpn. J. Appl. Phys. 47, 983-985 (2008).
[Crossref]

N. Hasegawa, T. Kawachi, T. Utsumi, A. Sasaki, M. Tanaka, M. Kado, K. Sukegawa, L. Peixiang, M. Kishimoto, T. Renzhong, K. Nagashima, M. Koike, H. Daido, and Y. Kato, “High-precision measurement of the wavelength of a nickel-like silver x-ray laser,” Jpn. J. Appl. Phys. 43, 2519-2522(2004).
[Crossref]

Nature (1)

Ph. Zeitoun, G. Faivre, S. Sebban, T. Mocek, A. Hallou, M. Fajardo, D. Aubert, Ph. Balcou, F. Burgy, D. Douillet, S. Kazamias, G. de Lachèze-Murel, T. Lefrou, S. le Pape, P. Mercère, H. Merdji, A. S. Morlens, J. P. Rousseau, and C. Valentin, “A high-intensity highly coherent soft x-ray femtosecond laser seeded by a high harmonic beam,” Nature 431, 426-429 (2004).
[Crossref] [PubMed]

Opt. Commun. (2)

C. L. S. Lewis, D. Neely, D. M. O'Neill, J. O. Uhomoibhi, M. H. Key, Y. Al Hadithi, G. J. Tallents, and S. A. Ramsden, “An injector/amplifier double target configuration for the Ne-like Ge x-ray laser scheme,” Opt. Commun. 91, 71-76 (1992).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219-221 (1985).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (4)

T. Kawachi, M. Kado, M. Tanaka, A. Sasaki, N. Hasegawa, A. V. Kilpio, S. Namba, K. Nagashima, P. Lu, K. Takahashi, H. Tang, R. Tai, M. Kishimoto, M. Koike, H. Daido, and Y. Kato, “Gain saturation of nickel-like silver and tin x-ray lasers by use of a tabletop pumping laser system,” Phys. Rev. A 66, 033815 (2002).
[Crossref]

Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Atwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 63, 033802 (2001).
[Crossref]

N. Hasegawa, T. Kawachi, A. Sasaki, M. Kishimoto, K. Sukegawa, M. Tanaka, R. Z. Tai, Y. Ochi, M. Nishikino, K. Nagashima, and Y. Kato, “Direct measurement of the temporal profile of the amplification gain of the transient collisional excitation neonlike manganese x-ray laser medium,” Phys. Rev. A 76, 043805 (2007).
[Crossref]

M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68, 061802 (2003).
[Crossref]

Phys. Rev. Lett. (10)

R. Kodama, D. Neely, Y. Kato, H. Daido, K. Murai, G. Yuan, A. MacPhee, and C. L. S. Lewis, “Generation of small-divergence soft x-ray laser by plasma waveguiding with a curved target,” Phys. Rev. Lett. 733215-3218 (1994).
[Crossref] [PubMed]

R. Keenan, J. Dunn, P. K. Patel, D. F. Price, R. F. Smith, and V. N. Shlyaptsev, “High-repetition-rate grazing-incidence pumped x-ray laser operating at 18.9 nm,” Phys. Rev. Lett. 94, 103901 (2005).
[Crossref] [PubMed]

R. Z. Tai, K. Namikawa, A. Sawada, M. Kishimoto, M. Tanaka, P. Lu, K. Nagashima, H. Maruyama, and M. Ando, “Picosecond view of microscopic-scale polarization clusters in paraelectric BaTiO3,” Phys. Rev. Lett. 93, 087601 (2004).
[Crossref] [PubMed]

R. F. Smith, J. Dunn, J. Nilsen, V. N. Shlyaptsev, S. Moon, J. Filevich, J. J. Rocca, M. C. Marconi, J. R. Hunter, and T. W. Barbee, Jr., “Picosecond x-ray laser interferometry of dense plasmas,” Phys. Rev. Lett. 89, 065004 (2002).
[Crossref] [PubMed]

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnuer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748-2751 (1997).
[Crossref]

J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, “Demonstration of x-ray amplification in transient gain nickel-like palladium scheme,” Phys. Rev. Lett. 80, 2825-2828 (1998).
[Crossref]

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, and T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110-113 (1985).
[Crossref] [PubMed]

Y. Wang, E. Granados, M. A. Larotonda, M. Berrill, B. M. Luther, D. Patel, C. S. Menoni, and J. J. Rocca, “High-brightness injection-seeded soft-x-ray-laser amplifier using a solid target,” Phys. Rev. Lett. . 97, 123901 (2006).
[Crossref] [PubMed]

J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, and V. N. Shlyaptsev, “Gain saturation regime for laser-driven tabletop, transient Ni-like ion x-ray lasers,” Phys. Rev. Lett. 84, 4834-4837 (2000).
[Crossref] [PubMed]

S. Namba, N. Hasegawa, M. Nishikino, T. Kawachi, M. Kishimoto, K. Sukegawa, M. Tanaka, Y. Ochi, K. Takiyama, and K. Nagashima, “Enhancement of double auger decay probability in Xenon clusters irradiated with a soft-x-ray laser pulse,” Phys. Rev. Lett. 99, 043004 (2007).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

H. Daido, “Review of soft x-ray laser development,” Rep. Prog. Phys. 65, 1513-1576 (2002).
[Crossref]

Other (5)

T. Kawachi, N. Hasegawa, M. Nishikino, Y. Ochi, M. Tanaka, T. Utsumi, and A. Sasaki, “Observation of density dip in a pre-formed plasma: toward axial pumping x-ray laser,” at X-Ray Lasers 2006: Proceedings of the 10th International Conference, August 20-25, Berlin, Germany (Springer Proceedings in Physics, 2006).

H. Yoshida, E. Ishii, K. Sawai, R. Kodama, H. Fujita, Y. Kitagawa, S. Sakabe, N. Miyanaga, Y. Izawa, T. Yamanaka, and M. Fujita, “Broadband high-gain pre-amplifier system based on optical parametric chirped pulse amplifier for PW laser,” at The 4th Pacific Rim Conference on Lasers and Electro-Optics, 2001, CLEO/PACIFIC Rim 2001 1, 80-81(2001).

K. Nagashima, M. Kishimoto, T. Kawachi, N. Hasegawa, M. Tanaka, Y. Ochi, M. Nishikino, K. Sukegawa, H. Yamatani, Y. Kunieda, and Y. Kato, “Recent advances of the x-ray laser research at APRC,” at X-Ray Lasers 2006: Proceedings of the 10th International Conference, August 20-25, Berlin, Germany (Springer Proceedings in Physics, 2006).

R. C. Elton, X-Ray Lasers (Academic, 1990).

The European X-Ray Free-Electron Laser Technical design report (M. Altarelli, R. Brinkmann, M. Chergui, W. Decking, B. Dobson, S. Düsterer, G. Grübel, W. Graeff, H. Graafsma, J. Hajdu, J. Marangos, J. Pflüger, H. Redlin, D. Riley, I. Robinson, J. Rossbach, A. Schwarz, K. Tiedtke, T. Tschentscher, I. Vartaniants, H. Wabnitz, H. Weise, R. Wichmann, K. Witte, A. Wolf, M. Wulff, and M. Yurkov, eds.), http://xfel.desy.de/tdr/tdr/index_eng.html.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup. The seed light from the first target is injected into the amplifier medium of the second target. A highly coherent XRL is generated at the gain medium of the second target. FFPs of (b) the seed XRL beam form the first target and (c) the unseeded XRL beam from the second target. Each XRL beam has large beam divergence. (d) Variation of the output energy of the unseeded XRL beam versus the amplifier medium length. Solid line shows a fit with an exponential fitting in the amplifier length until 4.2 mm .

Fig. 2
Fig. 2

(a) Variation of the output energy of the amplified XRL beam versus the delay time of the laser pulse for the first target. The strong amplification is observed at Δ t of 15 ps , and the gain duration is 20 ps . (b) Variation of the beam divergence of the amplified XRL beam versus the delay time of the laser pulse for the first target. The only horizontal beam divergence decrease with the delay time. (c) Variation of the peak brilliance of the amplified XRL beam versus the delay time of the laser pulse for the first target. The bandwidth is used 0.01% in this unit. Since the brilliance is also dependent on the beam divergence, the peak brilliance is observed at Δ t of 20 ps . (d) FFP of the amplified XRL beam at Δ t of 15 ps . A pumping laser is incident from the left-hand side. The dashed-dotted curve indicates the surface of the second target and the semiellipse drawn by the dotted curve is the shadow of the plasma on the second target. Since the curve focus is little tilted to the downward from the horizon, the amplified XRL beam is extended obliquely downward. (e) FFP of the amplified XRL beam at Δ t of 35 ps . The highly directional XRL beam is observed.

Fig. 3
Fig. 3

(a) Variation of the output energy of the amplified XRL beam versus the amplifier medium length. The circle is the high-power mode XRL, the square is the highly directional mode XRL, and the triangle is the estimated injection energy of the seed XRL. Solid line shows a fit with an exponential fitting in the amplifier length until 3.9 mm . The output energy at 3.9 mm amplifier length and the maximum output energy at 6.3 mm amplifier length of the high-power mode XRL are 0.4 μJ and 2 μJ , respectively. (b) Variation of the refractive angle of the high-power mode XRL versus the amplifier medium length. (c) Variation of the beam divergence of the high-power mode XRL beam at an intensity of 1 / e 2 .

Metrics