Abstract

A 720mm diameter 12-segment-bonded carbon-fiber-reinforced silicon carbide (C/SiC) composite mirror has been fabricated and tested at cryogenic temperatures. Interferometric measurements show significant cryogenic deformation of the C/SiC composite mirror, which is well reproduced by a model analysis with measured properties of the bonded segments. It is concluded that the deformation is due mostly to variation in coefficients of thermal expansion among segments. In parallel, a 4-degree-of-freedom ball-bearing support mechanism has been developed for cryogenic applications. The C/SiC composite mirror was mounted on an aluminum base plate with the support mechanism and tested again. Cryogenic deformation of the mirror attributed to thermal contraction of the aluminum base plate via the support mechanism is highly reduced by the support, confirming that the newly developed support mechanism is promising for its future application to large-aperture cooled space telescopes.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Nakagawa and H. Murakami, “SPICA, cooled telescope optimized for mid- and far-infrared astronomy,” Adv. Space Res. 40, 679-683 (2007).
    [CrossRef]
  2. T. Onaka, H. Kaneda, K. Enya, T. Nakagawa, H. Murakami, H. Matsuhara, and H. Kataza, “Development of large aperture cooled telescopes for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 5962, 448-462 (2005).
  3. T. Onaka and T. Nakagawa, “SPICA: a 3.5 m space infrared telescope for mid- and far-infrared astronomy,” Adv. Space Res. 36, 1123-1127 (2005).
  4. H. Murakami, “The infrared astronomical mission AKARI,” Publ. Astron. Soc. Jpn. 59, 369-376 (2007).
  5. T. Onaka, Y. Sugiyama, and S. Miura, “Telescope system of the Infrared Imaging Surveyor (IRIS),” Proc. SPIE 3354, 900-904 (1998).
    [CrossRef]
  6. H. Kaneda, T. Onaka, M. Kawada, and H. Murakami, “Cryogenic optical testing of sandwich-type silicon carbide mirrors,” Appl. Opt. 42, 708-714 (2003).
    [CrossRef] [PubMed]
  7. T. Ozaki, M. Kume, T. Oshima, T. Nakagawa, T. Matsumoto, H. Kaneda, H. Murakami, H. Kataza, K. Enya, Y. Yui, T. Onaka, and M. Kroedel, “Mechanical and thermal performance of C/SiC composites for SPICA mirror,” Proc. SPIE 5868, 132-141 (2005).
  8. M. R. Krödel and T. Ozaki, “HBCesic composites for space optics and structures,” Proc. SPIE 6666, 66660E (2007).
    [CrossRef]
  9. K. Enya, T. Nakagawa, H. Kaneda, T. Onaka, T. Ozaki, and M. Kume, “Microscopic surface structure of C/SiC composite mirrors for space cryogenic telescope,” Appl. Opt. 46, 2049-2056 (2007).
    [CrossRef] [PubMed]
  10. H. Kaneda, T. Nakagawa, T. Onaka, T. Matsumoto, H. Murakami, K. Enya, H. Kataza, H. Matsuhara, and Y. Y. Yui, "Development of space infrared telescope for the SPICA mission," Proc. SPIE 5487, 991-1000 (2004).
    [CrossRef]
  11. H. Kaneda, W. Kim, T. Onaka, T. Wada, Y. Ita, I. Sakon, and T. Takagi, “In-orbit focal adjustment of the AKARI telescope with Infrared Camera (IRC) images,” Publ. Astron. Soc. Jpn. 59, 423-427 (2007).
  12. H. Kaneda, T. Onaka, T. Nakagawa, K. Enya, H. Murakami, R. Yamashiro, T. Ezaki, Y. Numao, and Y. Sugiyama, “Cryogenic optical performance of the ASTRO-F SiC telescope,” Appl. Opt. 44, 6823-6832 (2005).
    [CrossRef] [PubMed]
  13. H. Kaneda, T. Onaka, T. Nakagawa, K. Enya, H. Murakami, R. Yamashiro, T. Ezaki, Y. Numao, and Y. Sugiyama, “Wavefront measurement of space infrared telescopes at cryogenic temperature,” Proc. SPIE 5965, 281-295 (2005).
  14. H. Kaneda, T. Onaka, R. Yamashiro, and T. Nakagawa, “Optical performance of the ASTRO-F telescope at cryogenic temperatures,” Proc. SPIE 4850, 230-240 (2003).
    [CrossRef]
  15. K. Ichimoto, S. Tsuneta, Y. Suematsu, T. Shimizu, M. Otsubo, Y. Kato, M. Noguchi, M. Nakagiri, T. Tamura, Y. Katsukawa, M. Kubo, Y. Sakamoto, H. Hara, K. Minesugi, A. Ohnishi, H. Saito, N. Kawaguchi, T. Matsushita, T. Nakaoji, K. Nagae, J. Sakamoto, Y. Hasuyama, I. Mikami, K. Miyawaki, Y. Sakurai, N. Kaido, T. Horiuchi, S. Shimada, T. Inoue, M. Mitsutake, N. Yoshida, O. Takahara, N. Takeyama, M. Suzuki, and S. Abe, “The Solar Optical Telescope onboard the Solar-B,” Proc. SPIE 5487, 1142-1151 (2004).
    [CrossRef]
  16. M. Haruna, M. Tabata, T. Oshima, T. Onaka, K. Enya, H. Kaneda, and T. Nakagawa, “Bearing test for mirror support mechanism of space infrared telescopes--evaluation of hybrid ball bearing characteristics in cryogenic environment,” in 25th International Symposium on Space Technology and Science(2006).

2007

T. Nakagawa and H. Murakami, “SPICA, cooled telescope optimized for mid- and far-infrared astronomy,” Adv. Space Res. 40, 679-683 (2007).
[CrossRef]

H. Murakami, “The infrared astronomical mission AKARI,” Publ. Astron. Soc. Jpn. 59, 369-376 (2007).

M. R. Krödel and T. Ozaki, “HBCesic composites for space optics and structures,” Proc. SPIE 6666, 66660E (2007).
[CrossRef]

K. Enya, T. Nakagawa, H. Kaneda, T. Onaka, T. Ozaki, and M. Kume, “Microscopic surface structure of C/SiC composite mirrors for space cryogenic telescope,” Appl. Opt. 46, 2049-2056 (2007).
[CrossRef] [PubMed]

H. Kaneda, W. Kim, T. Onaka, T. Wada, Y. Ita, I. Sakon, and T. Takagi, “In-orbit focal adjustment of the AKARI telescope with Infrared Camera (IRC) images,” Publ. Astron. Soc. Jpn. 59, 423-427 (2007).

2005

H. Kaneda, T. Onaka, T. Nakagawa, K. Enya, H. Murakami, R. Yamashiro, T. Ezaki, Y. Numao, and Y. Sugiyama, “Cryogenic optical performance of the ASTRO-F SiC telescope,” Appl. Opt. 44, 6823-6832 (2005).
[CrossRef] [PubMed]

H. Kaneda, T. Onaka, T. Nakagawa, K. Enya, H. Murakami, R. Yamashiro, T. Ezaki, Y. Numao, and Y. Sugiyama, “Wavefront measurement of space infrared telescopes at cryogenic temperature,” Proc. SPIE 5965, 281-295 (2005).

T. Ozaki, M. Kume, T. Oshima, T. Nakagawa, T. Matsumoto, H. Kaneda, H. Murakami, H. Kataza, K. Enya, Y. Yui, T. Onaka, and M. Kroedel, “Mechanical and thermal performance of C/SiC composites for SPICA mirror,” Proc. SPIE 5868, 132-141 (2005).

T. Onaka, H. Kaneda, K. Enya, T. Nakagawa, H. Murakami, H. Matsuhara, and H. Kataza, “Development of large aperture cooled telescopes for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 5962, 448-462 (2005).

T. Onaka and T. Nakagawa, “SPICA: a 3.5 m space infrared telescope for mid- and far-infrared astronomy,” Adv. Space Res. 36, 1123-1127 (2005).

2004

H. Kaneda, T. Nakagawa, T. Onaka, T. Matsumoto, H. Murakami, K. Enya, H. Kataza, H. Matsuhara, and Y. Y. Yui, "Development of space infrared telescope for the SPICA mission," Proc. SPIE 5487, 991-1000 (2004).
[CrossRef]

K. Ichimoto, S. Tsuneta, Y. Suematsu, T. Shimizu, M. Otsubo, Y. Kato, M. Noguchi, M. Nakagiri, T. Tamura, Y. Katsukawa, M. Kubo, Y. Sakamoto, H. Hara, K. Minesugi, A. Ohnishi, H. Saito, N. Kawaguchi, T. Matsushita, T. Nakaoji, K. Nagae, J. Sakamoto, Y. Hasuyama, I. Mikami, K. Miyawaki, Y. Sakurai, N. Kaido, T. Horiuchi, S. Shimada, T. Inoue, M. Mitsutake, N. Yoshida, O. Takahara, N. Takeyama, M. Suzuki, and S. Abe, “The Solar Optical Telescope onboard the Solar-B,” Proc. SPIE 5487, 1142-1151 (2004).
[CrossRef]

2003

H. Kaneda, T. Onaka, R. Yamashiro, and T. Nakagawa, “Optical performance of the ASTRO-F telescope at cryogenic temperatures,” Proc. SPIE 4850, 230-240 (2003).
[CrossRef]

H. Kaneda, T. Onaka, M. Kawada, and H. Murakami, “Cryogenic optical testing of sandwich-type silicon carbide mirrors,” Appl. Opt. 42, 708-714 (2003).
[CrossRef] [PubMed]

1998

T. Onaka, Y. Sugiyama, and S. Miura, “Telescope system of the Infrared Imaging Surveyor (IRIS),” Proc. SPIE 3354, 900-904 (1998).
[CrossRef]

Adv. Space Res.

T. Nakagawa and H. Murakami, “SPICA, cooled telescope optimized for mid- and far-infrared astronomy,” Adv. Space Res. 40, 679-683 (2007).
[CrossRef]

T. Onaka and T. Nakagawa, “SPICA: a 3.5 m space infrared telescope for mid- and far-infrared astronomy,” Adv. Space Res. 36, 1123-1127 (2005).

Appl. Opt.

Proc. SPIE

H. Kaneda, T. Onaka, T. Nakagawa, K. Enya, H. Murakami, R. Yamashiro, T. Ezaki, Y. Numao, and Y. Sugiyama, “Wavefront measurement of space infrared telescopes at cryogenic temperature,” Proc. SPIE 5965, 281-295 (2005).

H. Kaneda, T. Onaka, R. Yamashiro, and T. Nakagawa, “Optical performance of the ASTRO-F telescope at cryogenic temperatures,” Proc. SPIE 4850, 230-240 (2003).
[CrossRef]

K. Ichimoto, S. Tsuneta, Y. Suematsu, T. Shimizu, M. Otsubo, Y. Kato, M. Noguchi, M. Nakagiri, T. Tamura, Y. Katsukawa, M. Kubo, Y. Sakamoto, H. Hara, K. Minesugi, A. Ohnishi, H. Saito, N. Kawaguchi, T. Matsushita, T. Nakaoji, K. Nagae, J. Sakamoto, Y. Hasuyama, I. Mikami, K. Miyawaki, Y. Sakurai, N. Kaido, T. Horiuchi, S. Shimada, T. Inoue, M. Mitsutake, N. Yoshida, O. Takahara, N. Takeyama, M. Suzuki, and S. Abe, “The Solar Optical Telescope onboard the Solar-B,” Proc. SPIE 5487, 1142-1151 (2004).
[CrossRef]

T. Onaka, Y. Sugiyama, and S. Miura, “Telescope system of the Infrared Imaging Surveyor (IRIS),” Proc. SPIE 3354, 900-904 (1998).
[CrossRef]

H. Kaneda, T. Nakagawa, T. Onaka, T. Matsumoto, H. Murakami, K. Enya, H. Kataza, H. Matsuhara, and Y. Y. Yui, "Development of space infrared telescope for the SPICA mission," Proc. SPIE 5487, 991-1000 (2004).
[CrossRef]

Proc. SPIE

T. Ozaki, M. Kume, T. Oshima, T. Nakagawa, T. Matsumoto, H. Kaneda, H. Murakami, H. Kataza, K. Enya, Y. Yui, T. Onaka, and M. Kroedel, “Mechanical and thermal performance of C/SiC composites for SPICA mirror,” Proc. SPIE 5868, 132-141 (2005).

Proc. SPIE

M. R. Krödel and T. Ozaki, “HBCesic composites for space optics and structures,” Proc. SPIE 6666, 66660E (2007).
[CrossRef]

T. Onaka, H. Kaneda, K. Enya, T. Nakagawa, H. Murakami, H. Matsuhara, and H. Kataza, “Development of large aperture cooled telescopes for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 5962, 448-462 (2005).

Publ. Astron. Soc. Jpn.

H. Murakami, “The infrared astronomical mission AKARI,” Publ. Astron. Soc. Jpn. 59, 369-376 (2007).

H. Kaneda, W. Kim, T. Onaka, T. Wada, Y. Ita, I. Sakon, and T. Takagi, “In-orbit focal adjustment of the AKARI telescope with Infrared Camera (IRC) images,” Publ. Astron. Soc. Jpn. 59, 423-427 (2007).

Other

M. Haruna, M. Tabata, T. Oshima, T. Onaka, K. Enya, H. Kaneda, and T. Nakagawa, “Bearing test for mirror support mechanism of space infrared telescopes--evaluation of hybrid ball bearing characteristics in cryogenic environment,” in 25th International Symposium on Space Technology and Science(2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustrative view of the tested mirror unit that consists of the C/SiC composite mirror, Invar flexures, and 4-degree-of-freedom ball-bearing support mechanism.

Fig. 2
Fig. 2

(a) Schematic view of the measurement configuration of the mirror. (b) Liquid-helium cryochamber at ISAS/JAXA that was used for optical testing of the mirror. (c) Front surface of the 720 mm diameter bonded C/SiC composite mirror mounted on the adjustment stage in the ISAS/JAXA cryochamber. (d), (e) Same C/SiC composite mirror as shown in Fig. 4 below, but with the newly developed support mechanism fixing the mirror onto the aluminum base plate.

Fig. 3
Fig. 3

Surface figures of the C/SiC composite mirror measured at (a)  16 K , (b)  92 K , (c)  192 K , and (d)  263 K after subtraction of the figure at 290 K . (e) Mirror surface figure at 4.5 K predicted by a finite-element model analysis with the measured properties of the materials from the 12 segment lots. All values concerning the surface figure are given in units of the He–Ne laser wavelength of 632.8 nm .

Fig. 4
Fig. 4

CTEs measured at 300 K for the 12 segments of the mirror, 6 on the front (left) and 6 on the rear surface (right) given in units of parts in 10 6 , with the in-plane CTEs in the upper panels and the out-of-plane CTEs in the lower panels. The values in parentheses are lot numbers.

Fig. 5
Fig. 5

Change of the surface figure of the C/SiC composite mirror with temperature measured during the warm-up process (Fig. 3). For comparison, the change of the mirror surface figure caused by attaching the support mechanism is also indicated by the dotted line (see Fig. 6).

Fig. 6
Fig. 6

Cryogenic deformation of the mirror with the support mechanism, shown after subtraction of the cryogenic deformation of the mirror without the support mechanism measured at similar temperatures.

Tables (2)

Tables Icon

Table 1 Specifications of Tested 720 mm Diameter C/SiC Composite Mirror a

Tables Icon

Table 2 Properties of the C/SiC Samples from Constituent Segments of the Mirror a

Metrics