Abstract

A novel technique is proposed for measurement of the group delay (GD) and the differential group delay (DGD) of optical material, components, and fiber. This new method is based on continuous polarization modulation of the stimulus optical field as opposed to sequential polarization state switching used in the traditional phase shift method. A new complete derivation of the phase shift method, based on the modified Jones calculus of elementary matrices, is presented. The derivation reveals that the phase shift measurement actually depends on all eight elementary parameters that represent DGD and optical frequency derivatives of polarization-dependent loss (PDL). Thus, the new expression for the phase shift includes the combined effect of PDL and DGD. The proposed method is evaluated by measuring a section of polarization-maintaining fiber and a 50km length of single-mode fiber over a wavelength range from 1530 to 1610nm. Measurements of DGD in a long single-mode fiber are shown to be highly insensitive to environmentally induced GD drift.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED's,” IEEE J. Quantum Electron. 18, 1509-1515 (1982).
    [CrossRef]
  2. P. A. Williams, “Modulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm,” Electron. Lett. 35, 1578-1579 (1999).
    [CrossRef]
  3. L. E. Nelson, R. M. Jopson, H. Kogelnik, and J. P. Gordon, “Measurement of polarization mode dispersion vectors using the polarization-dependent signal delay method,” Opt. Express 6, 158-167 (2000).
    [CrossRef] [PubMed]
  4. R. M. Craig, S. L. Gilbert, and P. D. Hale, “High-resolution, nonmechanical approach to polarization-dependent transmission measurements,” J. Lightwave Technol. 16, 1285-1294(1998).
    [CrossRef]
  5. R. C. Jones, “New calculus for the treatment of optical systems. VII. Properties of the N-matrices,” J. Opt. Soc. Am. 38, 671-685 (1948).
    [CrossRef]
  6. B. Szafraniec and D. M. Baney, “Elementary matrix-based vector optical network analysis,” J. Lightwave Technol. 25, 1061-1069 (2007).
    [CrossRef]
  7. N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142, 119-125 (1997).
    [CrossRef]
  8. G. Arfken, Mathematical Methods for Physicists (Academic, 1985).
  9. B. Szafraniec, R. Maestle, B. Nebendahl, E. Thrush, and D. M. Baney, are preparing a manuscript to be called “Fast polarization dependent loss measurement based on continuous polarization modulation.”
  10. F. Heismann, “Compact electro-optic polarization scramblers for optically amplified lightwave systems,” J. Lightwave Technol. 14, 1801-1813 (1996).
    [CrossRef]
  11. S. Thaniyavarn, “Wavelength-independent, optical-damage-immune LiNbO3 TE-TM mode converter,” Opt. Lett. 11, 39-41 (1986).
    [CrossRef] [PubMed]
  12. A. J. P. van Haasteren, J. J. G. M. van der Tol, M. O. van Deventer, and H. J. Frankena, “Modeling and characterization of an electrooptic polarization controller on LiNbO3,” J. Lightwave Technol. 11, 1151-1157 (1993).
    [CrossRef]
  13. B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” Photon. Technol. Lett. 4, 1066-1069 (1992).
    [CrossRef]
  14. A. Galtarossa and L. Palmieri, “Spatially resolved PMD measurements,” J. Lightwave Technol. 22, 1103-1115 (2004).
    [CrossRef]
  15. A. Galtarossa, M. Guglielmucci, L. Palmieri, A. Pizzinat, L. Schenato, and C. G. Someda, “Experimental justification of a method for low-PMD measurements,” Photon. Technol. Lett. 18, 1228-1230 (2006).
    [CrossRef]

2007 (1)

2006 (1)

A. Galtarossa, M. Guglielmucci, L. Palmieri, A. Pizzinat, L. Schenato, and C. G. Someda, “Experimental justification of a method for low-PMD measurements,” Photon. Technol. Lett. 18, 1228-1230 (2006).
[CrossRef]

2004 (1)

2000 (1)

1999 (1)

P. A. Williams, “Modulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm,” Electron. Lett. 35, 1578-1579 (1999).
[CrossRef]

1998 (1)

1997 (1)

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142, 119-125 (1997).
[CrossRef]

1996 (1)

F. Heismann, “Compact electro-optic polarization scramblers for optically amplified lightwave systems,” J. Lightwave Technol. 14, 1801-1813 (1996).
[CrossRef]

1993 (1)

A. J. P. van Haasteren, J. J. G. M. van der Tol, M. O. van Deventer, and H. J. Frankena, “Modeling and characterization of an electrooptic polarization controller on LiNbO3,” J. Lightwave Technol. 11, 1151-1157 (1993).
[CrossRef]

1992 (1)

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” Photon. Technol. Lett. 4, 1066-1069 (1992).
[CrossRef]

1986 (1)

1982 (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED's,” IEEE J. Quantum Electron. 18, 1509-1515 (1982).
[CrossRef]

1948 (1)

Electron. Lett. (1)

P. A. Williams, “Modulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm,” Electron. Lett. 35, 1578-1579 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED's,” IEEE J. Quantum Electron. 18, 1509-1515 (1982).
[CrossRef]

J. Lightwave Technol. (5)

R. M. Craig, S. L. Gilbert, and P. D. Hale, “High-resolution, nonmechanical approach to polarization-dependent transmission measurements,” J. Lightwave Technol. 16, 1285-1294(1998).
[CrossRef]

A. Galtarossa and L. Palmieri, “Spatially resolved PMD measurements,” J. Lightwave Technol. 22, 1103-1115 (2004).
[CrossRef]

B. Szafraniec and D. M. Baney, “Elementary matrix-based vector optical network analysis,” J. Lightwave Technol. 25, 1061-1069 (2007).
[CrossRef]

F. Heismann, “Compact electro-optic polarization scramblers for optically amplified lightwave systems,” J. Lightwave Technol. 14, 1801-1813 (1996).
[CrossRef]

A. J. P. van Haasteren, J. J. G. M. van der Tol, M. O. van Deventer, and H. J. Frankena, “Modeling and characterization of an electrooptic polarization controller on LiNbO3,” J. Lightwave Technol. 11, 1151-1157 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142, 119-125 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Photon. Technol. Lett. (2)

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” Photon. Technol. Lett. 4, 1066-1069 (1992).
[CrossRef]

A. Galtarossa, M. Guglielmucci, L. Palmieri, A. Pizzinat, L. Schenato, and C. G. Someda, “Experimental justification of a method for low-PMD measurements,” Photon. Technol. Lett. 18, 1228-1230 (2006).
[CrossRef]

Other (2)

G. Arfken, Mathematical Methods for Physicists (Academic, 1985).

B. Szafraniec, R. Maestle, B. Nebendahl, E. Thrush, and D. M. Baney, are preparing a manuscript to be called “Fast polarization dependent loss measurement based on continuous polarization modulation.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Conceptual illustration of the phase shift method. (a) Sequential polarization state switching. (b) Continuous polarization modulation with simultaneous observation of multiple harmonics of phase (delay).

Fig. 2
Fig. 2

Simplified diagram of the experimental setup. TLS, tunable laser source.

Fig. 3
Fig. 3

Poincare sphere representation of the polarization modulation trajectory.

Fig. 4
Fig. 4

DGD measurements of a PM fiber patch cord.

Fig. 5
Fig. 5

DGD measurements of a 50 km length of SM optical fiber: (a) short-term drift and (b) long-term drift.

Tables (1)

Tables Icon

Table 1 Elementary Matrices

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

e U = exp [ j ω o t + j ψ + j ( a b ) cos ( ω e t ) ] .
e L = exp [ j ω o t j ψ j ( a + b ) cos ( ω e t ) ] .
e U + e L = 2 exp [ j ω o t j b cos ( ω e t ) ] cos [ ψ + a cos ( ω e t ) ] .
e U ( n ) = j n J n ( a b ) exp ( j n ω e + j ψ ) .
e L ( n ) = ( j ) n J n ( a + b ) exp ( j n ω e j ψ ) .
E = n = N N ( I + n ω e N ) A [ e U ( n ) + e L ( n ) ] ,
A = ( cos ( α ) exp ( j φ ) sin ( α ) ) ,
S = ( 1 q u v ) = ( 1 cos ( 2 α ) sin ( 2 α ) cos ( φ ) sin ( 2 α ) sin ( φ ) ) ,
i = E * E T .
τ = p 0 + p 1 q + p 2 u + p 3 v + b J 1 ( 2 a ) ( p 4 + p 5 q + p 6 u + p 7 v ) .
τ = p 0 + p 1 q + p 2 u + p 3 v .
p = m 11 + m 12 q + m 13 u + m 13 v ,
S = ( 1 cos ( 2 ω t ) 1 / 2 sin ( ω t ) + 1 / 2 sin ( 3 ω t ) 1 / 2 cos ( ω t ) + 1 / 2 cos ( 3 ω t ) ) .
( 1 q ( t ) u ( t ) v ( t ) ) = ( 1 q 0 + q 1 + q 2 + q 3 + u 0 + u 1 + u 2 + u 3 + v 0 + v 1 + v 2 + v 3 + ) ,
( τ 1 τ 2 τ 3 ) = ( q 1 u 1 v 1 q 2 u 2 v 2 q 3 u 3 v 3 ) ( p 1 p 2 p 3 ) ,
τ 0 = p 0 .
J 0 ( a + b ) J 1 ( a + b ) J 0 ( a b ) J 1 ( a b ) J 0 ( a + b ) J 1 ( a b ) + J 1 ( a + b ) J 0 ( a b ) .
s = 0 n 1 ( 2 s + 1 ) [ J s ( a + b ) J s + 1 ( a + b ) J s ( a b ) J s + 1 ( a b ) ] s = ( n 1 ) n J s ( a b ) J 1 s ( a + b ) .
b J 1 ( 2 a ) .
s = 0 ( 2 s + 1 ) [ J s ( a + b ) J s + 1 ( a + b ) J s ( a b ) J s + 1 ( a b ) ] = b ,
s = J s ( a b ) J 1 s ( a + b ) = s = J s ( a + b ) J 1 s ( a b ) = J 1 ( 2 a ) .

Metrics