Abstract

The frequency stabilization of a laser diode in the 1.3μm region using double resonance optical pumping (DROP) spectrum in the 5P3/26S1/2 transition of Rb87 atoms is demonstrated. The signal-to-noise ratio of the DROP spectrum is approximately ten times higher than that of the previous optical–optical double resonance spectrum. The spectral linewidth of the DROP measures 8.4MHz. When the frequency of a 1.367μm laser diode is stabilized to the DROP spectrum, the frequency stability is 9×1012 after 100s. Also, the wavelength of the frequency-stabilized laser locked to the 5P3/26S1/2 transition using a wavelength meter is measured.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Th.Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233-237 (2002).
    [CrossRef] [PubMed]
  2. R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323-325 (2005).
    [CrossRef]
  3. A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, and S. Chepurov, “Accurate absolute frequencies of the ν1+ν3 band of 13C2+H2 determined using an infrared mode-locked Cr:YAG laser frequency comb,” J. Opt. Soc. Am. B 23, 741-749 (2006).
    [CrossRef]
  4. W. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721-741 (1998).
    [CrossRef]
  5. Y. C. Chung and R. W. Tkach, “Frequency stabilization of a 1.3 μm DFB laser using optogalvanic effect,” Electron. Lett. 24, 804-805 (1988).
    [CrossRef]
  6. S. Yamaguchi and M. Suzuki, “Frequency locking of an InGaAsP semiconductor laser to the first overtone vibration-rotation lines of hydrogen fluoride,” Appl. Phys. Lett. 41, 1034-1036 (1982).
    [CrossRef]
  7. K. Chan, H. Ito, and H. Inaba, “Absorption measurement of ν1+2ν3 band of CH4 at 1.33 μm using an InGaAsP light emitting diode,” Appl. Opt. 22, 3802-3804 (1983).
    [CrossRef] [PubMed]
  8. N. Moriwaki, T. Tsuchida, Y. Takehisa, and N. Ohashi, “1.33 μm DFB diode laser spectroscopy of 12C2+H2,” J. Mol. Spectrosc. 137, 230-234 (1989).
    [CrossRef]
  9. A. Arie, M. L. Bortz, M. M. Fejer, and R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser,” Opt. Lett. 18, 1757-1759 (1993).
    [CrossRef] [PubMed]
  10. T. Dennis and E. A. Curtis, C. W. Oates, L. Hollberg, and S. L. Gilbert, “Wavelength references for 1300-nm wavelength-division multiplexing,” J. Lightwave Technol. 20, 776-804 (2002).
    [CrossRef]
  11. H. Sasada, “Wavelength measurements of the sub-Doppler spectral lines of Rb at 1.3 μm and 1.5 μm,” IEEE Photon. Technol. Lett. 4, 1307-1309 (1992).
    [CrossRef]
  12. M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42, 162-166(1993).
    [CrossRef]
  13. R. Boucher, M. Breton, N. Cyr, C. Julien, and M. Têtu, “Dither-free absolute frequency locking of a 1.3 μm DFB laser on 87Rb,” IEEE Photon. Technol. Lett. 4, 327-329 (1992).
    [CrossRef]
  14. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2+H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840-842 (1994).
    [CrossRef] [PubMed]
  15. H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85, 3965-3967 (2004).
    [CrossRef]
  16. H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping of Rb atoms,” J. Opt. Soc. Am. B 24, 2157-2164(2007).
    [CrossRef]
  17. W. K. Lee, H. S. Moon, and H. S. Suh, “Measurement of the absolute energy level and hyperfine structure of the 87Rb4D5/2 state,” Opt. Lett. 32, 2810-2812 (2007).
    [CrossRef] [PubMed]
  18. E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31-75 (1977).
    [CrossRef]
  19. O. S. Heavens, “Radiative transition probabilities of the lower excited states of the alkali metals,” J. Opt. Soc. Am 51, 1058-1061 (1961).
    [CrossRef]

2007 (2)

2006 (1)

2005 (1)

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323-325 (2005).
[CrossRef]

2004 (1)

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85, 3965-3967 (2004).
[CrossRef]

2002 (2)

1998 (1)

W. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721-741 (1998).
[CrossRef]

1994 (1)

1993 (2)

A. Arie, M. L. Bortz, M. M. Fejer, and R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser,” Opt. Lett. 18, 1757-1759 (1993).
[CrossRef] [PubMed]

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42, 162-166(1993).
[CrossRef]

1992 (2)

R. Boucher, M. Breton, N. Cyr, C. Julien, and M. Têtu, “Dither-free absolute frequency locking of a 1.3 μm DFB laser on 87Rb,” IEEE Photon. Technol. Lett. 4, 327-329 (1992).
[CrossRef]

H. Sasada, “Wavelength measurements of the sub-Doppler spectral lines of Rb at 1.3 μm and 1.5 μm,” IEEE Photon. Technol. Lett. 4, 1307-1309 (1992).
[CrossRef]

1989 (1)

N. Moriwaki, T. Tsuchida, Y. Takehisa, and N. Ohashi, “1.33 μm DFB diode laser spectroscopy of 12C2+H2,” J. Mol. Spectrosc. 137, 230-234 (1989).
[CrossRef]

1988 (1)

Y. C. Chung and R. W. Tkach, “Frequency stabilization of a 1.3 μm DFB laser using optogalvanic effect,” Electron. Lett. 24, 804-805 (1988).
[CrossRef]

1983 (1)

1982 (1)

S. Yamaguchi and M. Suzuki, “Frequency locking of an InGaAsP semiconductor laser to the first overtone vibration-rotation lines of hydrogen fluoride,” Appl. Phys. Lett. 41, 1034-1036 (1982).
[CrossRef]

1977 (1)

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31-75 (1977).
[CrossRef]

1961 (1)

O. S. Heavens, “Radiative transition probabilities of the lower excited states of the alkali metals,” J. Opt. Soc. Am 51, 1058-1061 (1961).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85, 3965-3967 (2004).
[CrossRef]

S. Yamaguchi and M. Suzuki, “Frequency locking of an InGaAsP semiconductor laser to the first overtone vibration-rotation lines of hydrogen fluoride,” Appl. Phys. Lett. 41, 1034-1036 (1982).
[CrossRef]

Electron. Lett. (1)

Y. C. Chung and R. W. Tkach, “Frequency stabilization of a 1.3 μm DFB laser using optogalvanic effect,” Electron. Lett. 24, 804-805 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Sasada, “Wavelength measurements of the sub-Doppler spectral lines of Rb at 1.3 μm and 1.5 μm,” IEEE Photon. Technol. Lett. 4, 1307-1309 (1992).
[CrossRef]

R. Boucher, M. Breton, N. Cyr, C. Julien, and M. Têtu, “Dither-free absolute frequency locking of a 1.3 μm DFB laser on 87Rb,” IEEE Photon. Technol. Lett. 4, 327-329 (1992).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42, 162-166(1993).
[CrossRef]

J. Lightwave Technol. (1)

J. Mol. Spectrosc. (1)

N. Moriwaki, T. Tsuchida, Y. Takehisa, and N. Ohashi, “1.33 μm DFB diode laser spectroscopy of 12C2+H2,” J. Mol. Spectrosc. 137, 230-234 (1989).
[CrossRef]

J. Opt. Soc. Am (1)

O. S. Heavens, “Radiative transition probabilities of the lower excited states of the alkali metals,” J. Opt. Soc. Am 51, 1058-1061 (1961).
[CrossRef]

J. Opt. Soc. Am. B (2)

Metrologia (1)

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323-325 (2005).
[CrossRef]

Nature (1)

Th.Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Opt. Lett. (3)

Rev. Mod. Phys. (2)

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31-75 (1977).
[CrossRef]

W. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721-741 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy diagram of the 5 S 1 / 2 5 P 3 / 2 6 S 1 / 2 transition of Rb 87 atoms. The L 1 laser is the 780 nm laser to detect the DROP; the L 2 laser is the 1367 nm laser to detect the OODR.

Fig. 2
Fig. 2

Experimental setups for the observation of the DROP and the OODR and for frequency stabilization of a laser diode using DROP. (DCF, dielectric coated filter; AP, aperture; HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarizing beam splitter; PD1, Si photodiode; and PD2, InGaAs photodiode).

Fig. 3
Fig. 3

DROP spectrum of the 5 S 1 / 2 5 P 3 / 2 6 S 1 / 2 transition of Rb 87 atoms.

Fig. 4
Fig. 4

Comparison of the DROP and the OODR in the 5 S 1 / 2 5 P 3 / 2 6 S 1 / 2 transition of Rb 87 atoms.

Fig. 5
Fig. 5

(a) Spectral linewidth and (b) Magnitude of the DROP spectrum as a function of the L 2 laser power.

Fig. 6
Fig. 6

Frequency stabilization using DROP. (a) DROP spectrum and the phase sensitive detection signal of the probe laser without direct modulation, and (b) Allan variances for the frequency stabilities of the L 2 laser ( 1367 nm ).

Metrics