Abstract

The atmosphere introduces chromatic errors that may limit the performance of adaptive optics (AO) systems on large telescopes. Various aspects of this problem have been considered in the literature over the past two decades. It is necessary to revisit this problem in order to examine the effect on currently planned systems, including very high-order AO on current 810m class telescopes and on future 3042m extremely large telescopes. We review the literature on chromatic effects and combine an analysis of all effects in one place. We examine implications for AO and point out some effects that should be taken into account in the design of future systems. In particular we show that attention should be paid to chromatic pupil shifts, which may arise in components such as atmospheric dispersion compensators.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Dierickx, E. Brunetto, F. Comeron, R. Gilmozzi, F. Gonte, K. Foch, M. L. Louarn, G. Monnet, J. Spyromillio, I. Surdej, C. Verinaud, and N. Yaitskova, “OWL phase a status report,” Proc. SPIE 5489, 391-406 (2004).
    [CrossRef]
  2. R. Gilmozzi and J. Spyromilio, “The European Extremely Large Telescope (E-ELT),” ESO Messenger 127, 11-19 (2007).
  3. T. Fusco, G. Rousset, J.-F. Sauvage, C. Petit, J.-L. Beuzit, K. Dohlen, D. Mouillet, J. Charton, M. Nicolle, M. Kasper, P. Baudoz, and P. Puget, “High-order adaptive optics requirements for direct detection of extrasolar planets: application to SPHERE instrument,” Opt. Express 14,7515-7534 (2006).
    [CrossRef] [PubMed]
  4. B. Macintosh, J. Graham, D. Palmer, R. Doyon, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, J. K. Wallace, B. Bauman, J. Evans, D. Erikson, K. Morzinski, D. Phillion, L. Poyneer, A. Sivaramakrishnan, R. Soummer, S. Thibault, and J.-P. Veran, “The Gemini planet imager,” Proc. SPIE 6272, 62720L (2006).
    [CrossRef]
  5. W. Lehn and S. van der Werf, “Atmospheric refraction: a history,” Appl. Opt. 44, 5624-5636 (2005).
    [CrossRef] [PubMed]
  6. E. P. Wallner, “The effects of atmospheric dispersion on compensated imaging,” Proc. SPIE 75, 119-125 (1976).
  7. E. P. Wallner, “Minimising atmospheric dispersion effects in compensated imaging,” J. Opt. Soc. Am. 67, 407-409 (1977).
    [CrossRef]
  8. C. Hogge and R. R. Butts, “Effects of using different wavelengths in wave-front sensing and correction,” J. Opt. Soc. Am. 72, 606-609 (1982).
    [CrossRef]
  9. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics (North Holland, 1981) Vol. 19, pp. 281-376.
    [CrossRef]
  10. S. Gladsyz, J. C. Christou, and M. Redfern, “Characterization of the Lick adaptive optics point spread function,” Proc. SPIE 6272, 62720J (2006).
  11. A. Tokovinin, “Polychromatic scintillation,” J. Opt. Soc. Am. A 20, 686-689 (2003).
    [CrossRef]
  12. D. Fried, “Spectral and angular covariance of scintillation for propagation in a randomly inhomogeneous medium,” Appl. Opt. 10, 721-731 (1971).
    [CrossRef] [PubMed]
  13. B. Femenía and N. Devaney, “Optimization with numerical simulations of the conjugate altitudes of deformable mirrors in an MCAO system,” Astron. Astrophys. 404, 1165-1176(2003).
    [CrossRef]
  14. J. Vernin and C. Muñoz-Tuñón, “Optical seeing at La Palma Observatory. 2: intensive site testing campaign at the Nordic optical telescope,” Astron. Astrophys 284, 311-318 (1994).
  15. C. Wynne and S. Worswick, “Atmospheric dispersion correctors at the Cassegrain focus,” Mon. Not. R. Astron. Soc. 220, 657-670 (1986).
  16. G. Avila, G. Rupprecht, and J. M. Beckers, “Atmospheric dispersion correction for the FORS focal reducers at ESO VLT,” Proc. SPIE 2871, 1135-1143 (1996).
    [CrossRef]
  17. A. Goncharov, N. Devaney, and C. Dainty, “Atmospheric dispersion compensation for extremely large telescopes,” Opt. Express 15, 1534-1542 (2007).
    [CrossRef] [PubMed]
  18. H. Roe, “Implications of atmospheric differential refraction for adaptive optics observations,” Publ. Astron. Soc. Pac. 114, 450-461 (2002).
    [CrossRef]
  19. J. Owens, “Optical refractive index of air: dependence on pressure, temperature and composition,” Appl. Opt. 6, 51-59(1967).
    [CrossRef] [PubMed]
  20. P. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566-1573 (1996).
    [CrossRef] [PubMed]
  21. K. Birch and M. Downs, “The results of a comparison between calculated and measured values of the refractive index of air,” J. Phys. E 21, 694-695 (1988).
    [CrossRef]
  22. J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).
  23. R. Stone, “An accurate method for computing atmospheric refraction,” Publ. Astron. Soc. Pac. 108, 1051-1058 (1996).
    [CrossRef]
  24. V. Abalakin, Refraction Tables of Pulkovo Observatory (Nauka, 1985).
  25. S. van der Werf, “Ray tracing and refraction in the modified US1976 atmosphere,” Appl. Opt. 42, 354-366 (2003).
    [CrossRef] [PubMed]
  26. V. Malyuto and M. Meinel, “Spectral classification systems and photometry needed in calculations for atmospheric refraction,” Astron. Astrophys. Suppl. Ser. 142, 457-466 (2000).
    [CrossRef]
  27. M. Owner-Petersen and A. Goncharov, “Some consequences of atmospheric dispersion for ELTs,” Proc. SPIE 5489, 507-517 (2004).
    [CrossRef]
  28. R. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976).
    [CrossRef]
  29. N. Nightingale and D. Buscher, “Interferometric seeing measurements at the La Palma Observatory,” Mon. Not. R. Astron. Soc. 251, 155-166 (1991).
  30. M. M. Colavita, M. Shao, and D. H. Staelin, “Atmospheric phase measurements with the Mark III stellar interferometer,” Appl. Opt. 26, 4106-4112 (1987).
    [CrossRef] [PubMed]
  31. A. Ziad, M. Schock, G. Chanan, M. Troy, R. Dekany, B. F. Lane, J. Borgnino, and F. Martin, “Comparison of measurements of the outer scale of turbulence by three different techniques,” Appl. Opt. 43, 2316-2324 (2004).
    [CrossRef] [PubMed]
  32. R. Sasiela, “Strehl ratios with various types of anisoplanatism,” J. Opt. Soc. Am. A 9, 1398-1405 (1992).
    [CrossRef]
  33. T. Nakajima, “Zenith-distance dependence of chromatic shear effect: a limiting factor for an extreme adaptive optics system,” Astrophys. J. 652, 1782-1786 (2006).
    [CrossRef]
  34. “Earth Atmosphere Model”, [http://www.grc.nasa.gov/WWW/K-12/airplane/atmosmet.html].
  35. O. Guyon, “Limits of adaptive optics for high-contrast imaging,” Astrophys. J. 629, 592-614 (2005).
    [CrossRef]
  36. L. Jolissaint, J.-P. Veran, and R. Conan, “Analytical modeling of adaptive optics: foundations of the phase spatial power spectrum approach,” J. Opt. Soc. Am. A 23, 382-394(2006).
    [CrossRef]
  37. M. Owner-Petersen, “Effects of atmospheric dispersion on the PSF background level,” Proc. SPIE 6272, 62722F(2006).
    [CrossRef]

2007 (2)

R. Gilmozzi and J. Spyromilio, “The European Extremely Large Telescope (E-ELT),” ESO Messenger 127, 11-19 (2007).

A. Goncharov, N. Devaney, and C. Dainty, “Atmospheric dispersion compensation for extremely large telescopes,” Opt. Express 15, 1534-1542 (2007).
[CrossRef] [PubMed]

2006 (5)

L. Jolissaint, J.-P. Veran, and R. Conan, “Analytical modeling of adaptive optics: foundations of the phase spatial power spectrum approach,” J. Opt. Soc. Am. A 23, 382-394(2006).
[CrossRef]

T. Fusco, G. Rousset, J.-F. Sauvage, C. Petit, J.-L. Beuzit, K. Dohlen, D. Mouillet, J. Charton, M. Nicolle, M. Kasper, P. Baudoz, and P. Puget, “High-order adaptive optics requirements for direct detection of extrasolar planets: application to SPHERE instrument,” Opt. Express 14,7515-7534 (2006).
[CrossRef] [PubMed]

B. Macintosh, J. Graham, D. Palmer, R. Doyon, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, J. K. Wallace, B. Bauman, J. Evans, D. Erikson, K. Morzinski, D. Phillion, L. Poyneer, A. Sivaramakrishnan, R. Soummer, S. Thibault, and J.-P. Veran, “The Gemini planet imager,” Proc. SPIE 6272, 62720L (2006).
[CrossRef]

T. Nakajima, “Zenith-distance dependence of chromatic shear effect: a limiting factor for an extreme adaptive optics system,” Astrophys. J. 652, 1782-1786 (2006).
[CrossRef]

M. Owner-Petersen, “Effects of atmospheric dispersion on the PSF background level,” Proc. SPIE 6272, 62722F(2006).
[CrossRef]

2005 (2)

O. Guyon, “Limits of adaptive optics for high-contrast imaging,” Astrophys. J. 629, 592-614 (2005).
[CrossRef]

W. Lehn and S. van der Werf, “Atmospheric refraction: a history,” Appl. Opt. 44, 5624-5636 (2005).
[CrossRef] [PubMed]

2004 (3)

A. Ziad, M. Schock, G. Chanan, M. Troy, R. Dekany, B. F. Lane, J. Borgnino, and F. Martin, “Comparison of measurements of the outer scale of turbulence by three different techniques,” Appl. Opt. 43, 2316-2324 (2004).
[CrossRef] [PubMed]

M. Owner-Petersen and A. Goncharov, “Some consequences of atmospheric dispersion for ELTs,” Proc. SPIE 5489, 507-517 (2004).
[CrossRef]

P. Dierickx, E. Brunetto, F. Comeron, R. Gilmozzi, F. Gonte, K. Foch, M. L. Louarn, G. Monnet, J. Spyromillio, I. Surdej, C. Verinaud, and N. Yaitskova, “OWL phase a status report,” Proc. SPIE 5489, 391-406 (2004).
[CrossRef]

2003 (3)

B. Femenía and N. Devaney, “Optimization with numerical simulations of the conjugate altitudes of deformable mirrors in an MCAO system,” Astron. Astrophys. 404, 1165-1176(2003).
[CrossRef]

S. van der Werf, “Ray tracing and refraction in the modified US1976 atmosphere,” Appl. Opt. 42, 354-366 (2003).
[CrossRef] [PubMed]

A. Tokovinin, “Polychromatic scintillation,” J. Opt. Soc. Am. A 20, 686-689 (2003).
[CrossRef]

2002 (1)

H. Roe, “Implications of atmospheric differential refraction for adaptive optics observations,” Publ. Astron. Soc. Pac. 114, 450-461 (2002).
[CrossRef]

2000 (1)

V. Malyuto and M. Meinel, “Spectral classification systems and photometry needed in calculations for atmospheric refraction,” Astron. Astrophys. Suppl. Ser. 142, 457-466 (2000).
[CrossRef]

1996 (3)

R. Stone, “An accurate method for computing atmospheric refraction,” Publ. Astron. Soc. Pac. 108, 1051-1058 (1996).
[CrossRef]

G. Avila, G. Rupprecht, and J. M. Beckers, “Atmospheric dispersion correction for the FORS focal reducers at ESO VLT,” Proc. SPIE 2871, 1135-1143 (1996).
[CrossRef]

P. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566-1573 (1996).
[CrossRef] [PubMed]

1994 (1)

J. Vernin and C. Muñoz-Tuñón, “Optical seeing at La Palma Observatory. 2: intensive site testing campaign at the Nordic optical telescope,” Astron. Astrophys 284, 311-318 (1994).

1992 (1)

1991 (1)

N. Nightingale and D. Buscher, “Interferometric seeing measurements at the La Palma Observatory,” Mon. Not. R. Astron. Soc. 251, 155-166 (1991).

1988 (1)

K. Birch and M. Downs, “The results of a comparison between calculated and measured values of the refractive index of air,” J. Phys. E 21, 694-695 (1988).
[CrossRef]

1987 (1)

1986 (1)

C. Wynne and S. Worswick, “Atmospheric dispersion correctors at the Cassegrain focus,” Mon. Not. R. Astron. Soc. 220, 657-670 (1986).

1982 (1)

1977 (1)

1976 (2)

R. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976).
[CrossRef]

E. P. Wallner, “The effects of atmospheric dispersion on compensated imaging,” Proc. SPIE 75, 119-125 (1976).

1971 (1)

1967 (1)

Appl. Opt. (7)

Astron. Astrophys (1)

J. Vernin and C. Muñoz-Tuñón, “Optical seeing at La Palma Observatory. 2: intensive site testing campaign at the Nordic optical telescope,” Astron. Astrophys 284, 311-318 (1994).

Astron. Astrophys. (1)

B. Femenía and N. Devaney, “Optimization with numerical simulations of the conjugate altitudes of deformable mirrors in an MCAO system,” Astron. Astrophys. 404, 1165-1176(2003).
[CrossRef]

Astron. Astrophys. Suppl. Ser. (1)

V. Malyuto and M. Meinel, “Spectral classification systems and photometry needed in calculations for atmospheric refraction,” Astron. Astrophys. Suppl. Ser. 142, 457-466 (2000).
[CrossRef]

Astrophys. J. (2)

T. Nakajima, “Zenith-distance dependence of chromatic shear effect: a limiting factor for an extreme adaptive optics system,” Astrophys. J. 652, 1782-1786 (2006).
[CrossRef]

O. Guyon, “Limits of adaptive optics for high-contrast imaging,” Astrophys. J. 629, 592-614 (2005).
[CrossRef]

ESO Messenger (1)

R. Gilmozzi and J. Spyromilio, “The European Extremely Large Telescope (E-ELT),” ESO Messenger 127, 11-19 (2007).

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (3)

J. Phys. E (1)

K. Birch and M. Downs, “The results of a comparison between calculated and measured values of the refractive index of air,” J. Phys. E 21, 694-695 (1988).
[CrossRef]

Mon. Not. R. Astron. Soc. (2)

C. Wynne and S. Worswick, “Atmospheric dispersion correctors at the Cassegrain focus,” Mon. Not. R. Astron. Soc. 220, 657-670 (1986).

N. Nightingale and D. Buscher, “Interferometric seeing measurements at the La Palma Observatory,” Mon. Not. R. Astron. Soc. 251, 155-166 (1991).

Opt. Express (2)

Proc. SPIE (7)

M. Owner-Petersen, “Effects of atmospheric dispersion on the PSF background level,” Proc. SPIE 6272, 62722F(2006).
[CrossRef]

G. Avila, G. Rupprecht, and J. M. Beckers, “Atmospheric dispersion correction for the FORS focal reducers at ESO VLT,” Proc. SPIE 2871, 1135-1143 (1996).
[CrossRef]

P. Dierickx, E. Brunetto, F. Comeron, R. Gilmozzi, F. Gonte, K. Foch, M. L. Louarn, G. Monnet, J. Spyromillio, I. Surdej, C. Verinaud, and N. Yaitskova, “OWL phase a status report,” Proc. SPIE 5489, 391-406 (2004).
[CrossRef]

S. Gladsyz, J. C. Christou, and M. Redfern, “Characterization of the Lick adaptive optics point spread function,” Proc. SPIE 6272, 62720J (2006).

B. Macintosh, J. Graham, D. Palmer, R. Doyon, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, J. K. Wallace, B. Bauman, J. Evans, D. Erikson, K. Morzinski, D. Phillion, L. Poyneer, A. Sivaramakrishnan, R. Soummer, S. Thibault, and J.-P. Veran, “The Gemini planet imager,” Proc. SPIE 6272, 62720L (2006).
[CrossRef]

E. P. Wallner, “The effects of atmospheric dispersion on compensated imaging,” Proc. SPIE 75, 119-125 (1976).

M. Owner-Petersen and A. Goncharov, “Some consequences of atmospheric dispersion for ELTs,” Proc. SPIE 5489, 507-517 (2004).
[CrossRef]

Publ. Astron. Soc. Pac. (2)

H. Roe, “Implications of atmospheric differential refraction for adaptive optics observations,” Publ. Astron. Soc. Pac. 114, 450-461 (2002).
[CrossRef]

R. Stone, “An accurate method for computing atmospheric refraction,” Publ. Astron. Soc. Pac. 108, 1051-1058 (1996).
[CrossRef]

Other (4)

V. Abalakin, Refraction Tables of Pulkovo Observatory (Nauka, 1985).

J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics (North Holland, 1981) Vol. 19, pp. 281-376.
[CrossRef]

“Earth Atmosphere Model”, [http://www.grc.nasa.gov/WWW/K-12/airplane/atmosmet.html].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Strehl ratio as a function of the zenith angle for two AO systems, one having a Strehl ratio of 0.99 at zenith and the other having a Strehl ratio of 0.95 at zenith.

Fig. 2
Fig. 2

Strehl ratio reduction due to chromatic scintillation as a function of wavelength, with the wavefront sensing performed at 0.589 μ m . The zenith angle is 45 ° and the turbulence is the ORM seven-layer model.

Fig. 3
Fig. 3

Strehl ratio for chromatic path length error as a function of wavelength for a telescope aperture diameter of 42 m , r 0 = 0.5 m at 0.5 μ m and outer scale, L 0 , of 22.5 m (solid curve), 42 m (long dashed curve), and infinity (short-dashed curve).

Fig. 4
Fig. 4

Displacement (in meters) between rays at 0.589 μ m and 2.2 μ m as a function of altitude (in meters) for zenith angles of 30 ° (dot-dashed curve), 40 ° (dashed curve), and 50 ° (solid curve).

Fig. 5
Fig. 5

Strehl ratio as a function of correction wavelength with wavefront sensing at 0.589 μ m . The solid curve corresponds to Sasiela’s analysis while the dashed curve corresponds to that of both Nakajima and Wallner. The zenith angle is 55 ° and the ORM seven-layer model is used.

Fig. 6
Fig. 6

Strehl ratio as a function of the fractional residual dis persive shift for the seven-layer ORM profile (solid curve) and a Mauna Kea six-layer profile (dashed curve).

Fig. 7
Fig. 7

Pupil shift introduced by linear ADC in a nontelecentric path.

Fig. 8
Fig. 8

Schematic optical layout of the telescope with a linear ADC working in the telecentric path. The solid curves represent the chief rays at three different wavelengths; the dotted lines are the corresponding marginal rays.

Fig. 9
Fig. 9

Background due to chromatic path length error for a D = 42 m telescope, with λ 1 = 0.8 μ m , λ 2 = 0.9 μ m in the case of having an infinite outer scale (solid curve), and an outer scale of 20 m (dashed curve). The value of r 0 is 0.15 m at 0.5 μ m .

Fig. 10
Fig. 10

Background due to chromatic ansioplanatism error assuming the ORM seven-layer atmospheric model, D = 42 m , λ 1 = 0.8 μ m , λ 2 = 0.9 μ m for zenith angles of 30 ° (dot-dashed curve), 40 ° (dashed curve), and 50 ° (solid curve).

Tables (1)

Tables Icon

Table 1 ORM Seven-Layer Profile of Femenía and Devaney [13]

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

SR = exp ( - A r 0 - 5 / 3 ) ,
SR = exp ( - B sec 8 / 3 ( ξ ) ) ,
σ 2 = 4.08 π k 2 2 0 L C n 2 ( z ) d z 0 K - 8 / 3 d K × { 1 - ( 4 K D ) 2 [ J 1 ( K D 2 ) ] 2 } { cos [ z K 2 2 k 1 ] - cos [ z K 2 2 k 2 ] } 2 ,
δ θ = κ α ( 1 - β ) tan ( ξ 0 ) - κ α ( β - α / 2 ) tan 3 ( ξ 0 ) ,
δ ϕ ( λ ) = ϵ ( λ , λ 0 ) ϕ ( λ 0 ) ,
ϵ ( λ , λ 0 ) = λ 0 λ n s ( λ ) - n s ( λ 0 ) n s ( λ 0 ) - 1 ,
σ c h 2 ( λ ) = ϵ 2 ( λ , λ 0 ) σ u 2 .
σ u 2 = 1.03 ( D r 0 ) 5 / 3 .
d c ( z ) = sin ( ξ ) Δ n 0 cos 2 ( ξ ) 0 z d z α ( z ) ,
σ ϕ 2 = [ sin ( ξ ) Δ n 0 cos 2 ( ξ ) ] 5 / 3 T 5 / 3 ,
T m = 2.91 k 0 2 sec ( ξ ) 0 L d h C n 2 ( h ) I m ( h ) ,
I ( h ) = 0 h d z α ( z ) .
SR ( 1 + 0.9736 E + 0.5133 E 2 + 0.2009 E 3 + 0.069 E 4 + 0.02744 E 5 ) exp ( - σ 2 ) ,
E = d 2 D 1 / 3
d m 2.91 k 0 2 0 d z C n 2 ( z ) d m ( z ) .
C * C = f S F ,
PSF ( f ) = S · PSF D ( f ) + 4 π D 2 W ( f ) ,
PSF b g ( f ) = ϵ 2 ( λ 1 , λ 2 ) W atm ( f , λ 1 ) ,
W atm ( f , λ ) = 0.0229 r 0 5 / 3 ( λ ) ( f 2 + L 0 - 2 ) ( - 11 / 6 ) ,
W ( f ) = 0.0458 f - 11 / 3 i = 1 N r 0 , i - 5 / 3 [ 1 - cos ( 2 π h i f θ ) ] ,

Metrics