Abstract

A detailed theoretical treatment of a one- (1D) and three-dimensional (3D) photothermal deflection (PTD) technique is presented. Important effects of the probe beam size occur in PTD experiments when the radius of this beam is of the order of magnitude of the thermal diffusion length. The calculation of this effect is checked by experiments in paraffin oil at low modulation frequency as well as for 1D and for 3D. In this last case, we have considered two kinds of deflection: normal and transverse, and we have studied their variation for different values of the pump beam radius. The coincidence between theoretical and experimental curves confirms the validity of our theoretical model.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photothermal deflection studies of GaAs epitaxial layers

Nibu A. George, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan
Appl. Opt. 41(24) 5179-5184 (2002)

Photothermal deflection spectroscopy and detection

W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier
Appl. Opt. 20(8) 1333-1344 (1981)

Laser beam profile measurement by photothermal deflection technique

A. Rose, Y.-X. Nie, and R. Gupta
Appl. Opt. 25(11) 1738-1741 (1986)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription