Abstract

A twisted nematic liquid crystal wavefront corrector (TN-LCWFC) partially modulates the incident polarized light. A blazed grating may be preapplied on the TN-LCWFC to filter the unmodulated light for the purpose of stable adaptive correction. However, for broadband light, the dispersion of the blazed grating affects the image resolution. An achromatic method is presented to eliminate the dispersion of the blazed grating. Based on a prism model, we analyze the achromatic principle. An achromatic system with a conjugated blazed grating and an achromatic lens is given to eliminate the dispersion. An experiment was done with two transmitted blazed gratings so as to validate our method. Finally, a liquid crystal spatial light modulator was used as a conjugated grating to eliminate the dispersion of the blazed grating in an adaptive optics system. The results showed that the dispersion was partially compensated, and a resolvable image was achieved with a 600700nm wave band.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, "Phase-only liquid crystal spatial light modulator for wavefront correction with high precision," Opt. Express 12, 6403-6409 (2004).
    [CrossRef] [PubMed]
  2. G. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517-1520 (1997).
    [CrossRef] [PubMed]
  3. D. C. Burns, I. Underwood, J. Gourlay, A. O'Hara, and D. G. Vass, “A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119, 623-632 (1995).
    [CrossRef]
  4. M. A. A. Neil, M. J. Booth, and T. Wilson, “Dynamic wave-front generation for the characterization and testing of optical systems,” Opt. Lett. 23, 1849-1851 (1998).
    [CrossRef]
  5. F. Vargas-Martín and P. Artal, “Phasor averaging for wavefront correction with liquid crystal spatial light modulators,” Opt. Commun. 152, 233-238 (1998).
    [CrossRef]
  6. T.-L. Kelly and J. Munch, “Wavelength dependence of twisted nematic liquid crystal phase modulators,” Opt. Commun. 156, 252-258 (1998).
    [CrossRef]
  7. A., Márquez, M. Yamauchi, J. A. Davis, and D. J. Franich, “Phase measurements of a twisted nematic liquid crystal spatial light modulator with a common-path interferometer,” Opt. Commun. 190, 129-133 (2001).
    [CrossRef]
  8. F. Stabo-Eeg, K. Gastinger, O. D. Hunderi, and M. Lindgren, “Determination of the phase- and polarization-changing properties of reflective spatial light modulators in one set-up,” Proc. SPIE 5618, 174-182 (2004).
    [CrossRef]
  9. V. Durán, J. Lancis, E. Tajahuerce, and M. Fernández-Alonso, “Phase-only modulation with a twisted nematic liquid crystal display by means of equi-azimuth polarization states,” Opt. Express 14, 5607-5616 (2006).
    [CrossRef] [PubMed]
  10. Z. Cao, Q. Mu, G. Dovillaire, T. Grandin, E. Lavergne, L. Hu, and L. Xuan, “Effect of the twisted alignment on the liquid crystal wavefront corrector,” Liq. Cryst. 34, 1227-1232 (2007).
    [CrossRef]
  11. S. Serati and J. Stockley, “Advances in liquid crystal based devices for wavefront control and beamsteering,” Proc. SPIE 5894, 58940K-1 (2005).
  12. G. M. Morris, "Diffraction theory for an achromatic Fourier transformation," Appl. Opt. 20, 2017-2025 (1981).
    [CrossRef] [PubMed]
  13. D. C. Dayton, J. Gonglewski, S. R. Restaino, and S. Browne, “MEMS adaptive optics for high resolution imaging of low Earth orbit satellites,” SPIE 5490, 1514-1525 (2004).
    [CrossRef]
  14. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, “Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device,” Opt. Express 14, 8013-8018 (2006).
    [CrossRef] [PubMed]
  15. Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, “Liquid crystal based adaptive optics system to compensate both low and high order aberrations in model eye,” Opt. Express 15, 1946-1953 (2007).
    [CrossRef] [PubMed]

2007 (2)

Z. Cao, Q. Mu, G. Dovillaire, T. Grandin, E. Lavergne, L. Hu, and L. Xuan, “Effect of the twisted alignment on the liquid crystal wavefront corrector,” Liq. Cryst. 34, 1227-1232 (2007).
[CrossRef]

Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, “Liquid crystal based adaptive optics system to compensate both low and high order aberrations in model eye,” Opt. Express 15, 1946-1953 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (1)

S. Serati and J. Stockley, “Advances in liquid crystal based devices for wavefront control and beamsteering,” Proc. SPIE 5894, 58940K-1 (2005).

2004 (3)

F. Stabo-Eeg, K. Gastinger, O. D. Hunderi, and M. Lindgren, “Determination of the phase- and polarization-changing properties of reflective spatial light modulators in one set-up,” Proc. SPIE 5618, 174-182 (2004).
[CrossRef]

L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, "Phase-only liquid crystal spatial light modulator for wavefront correction with high precision," Opt. Express 12, 6403-6409 (2004).
[CrossRef] [PubMed]

D. C. Dayton, J. Gonglewski, S. R. Restaino, and S. Browne, “MEMS adaptive optics for high resolution imaging of low Earth orbit satellites,” SPIE 5490, 1514-1525 (2004).
[CrossRef]

2001 (1)

A., Márquez, M. Yamauchi, J. A. Davis, and D. J. Franich, “Phase measurements of a twisted nematic liquid crystal spatial light modulator with a common-path interferometer,” Opt. Commun. 190, 129-133 (2001).
[CrossRef]

1998 (3)

M. A. A. Neil, M. J. Booth, and T. Wilson, “Dynamic wave-front generation for the characterization and testing of optical systems,” Opt. Lett. 23, 1849-1851 (1998).
[CrossRef]

F. Vargas-Martín and P. Artal, “Phasor averaging for wavefront correction with liquid crystal spatial light modulators,” Opt. Commun. 152, 233-238 (1998).
[CrossRef]

T.-L. Kelly and J. Munch, “Wavelength dependence of twisted nematic liquid crystal phase modulators,” Opt. Commun. 156, 252-258 (1998).
[CrossRef]

1997 (1)

1995 (1)

D. C. Burns, I. Underwood, J. Gourlay, A. O'Hara, and D. G. Vass, “A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119, 623-632 (1995).
[CrossRef]

1981 (1)

Appl. Opt. (2)

Liq. Cryst. (1)

Z. Cao, Q. Mu, G. Dovillaire, T. Grandin, E. Lavergne, L. Hu, and L. Xuan, “Effect of the twisted alignment on the liquid crystal wavefront corrector,” Liq. Cryst. 34, 1227-1232 (2007).
[CrossRef]

Opt. Commun. (4)

D. C. Burns, I. Underwood, J. Gourlay, A. O'Hara, and D. G. Vass, “A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119, 623-632 (1995).
[CrossRef]

F. Vargas-Martín and P. Artal, “Phasor averaging for wavefront correction with liquid crystal spatial light modulators,” Opt. Commun. 152, 233-238 (1998).
[CrossRef]

T.-L. Kelly and J. Munch, “Wavelength dependence of twisted nematic liquid crystal phase modulators,” Opt. Commun. 156, 252-258 (1998).
[CrossRef]

A., Márquez, M. Yamauchi, J. A. Davis, and D. J. Franich, “Phase measurements of a twisted nematic liquid crystal spatial light modulator with a common-path interferometer,” Opt. Commun. 190, 129-133 (2001).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (2)

F. Stabo-Eeg, K. Gastinger, O. D. Hunderi, and M. Lindgren, “Determination of the phase- and polarization-changing properties of reflective spatial light modulators in one set-up,” Proc. SPIE 5618, 174-182 (2004).
[CrossRef]

S. Serati and J. Stockley, “Advances in liquid crystal based devices for wavefront control and beamsteering,” Proc. SPIE 5894, 58940K-1 (2005).

SPIE (1)

D. C. Dayton, J. Gonglewski, S. R. Restaino, and S. Browne, “MEMS adaptive optics for high resolution imaging of low Earth orbit satellites,” SPIE 5490, 1514-1525 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical layout to illustrate the principle of the achromatic system: (a) just B light and (b) broadband visible light; P represents polychromatic light.

Fig. 2
Fig. 2

Corrected first order image at different wavelengths with a correction wavelength of 633 nm ; the upper blurred image is the zero order: (a) 532, (b) 550, (c) 633, and (d)  650 nm .

Fig. 3
Fig. 3

Optical layout for eliminating the grating dispersion: BG1 and BG2 are the transmitted blazed gratings.

Fig. 4
Fig. 4

Observed image on the screen: (a) dispersion image and (b) achromatic image.

Fig. 5
Fig. 5

Designed binary grating with 16 quantified levels, T, the grating period; λ represents the correction wavelength of the adaptive optics system.

Fig. 6
Fig. 6

Optical layout for eliminating the dispersion of the TN-LCWFC: L1, L2, L3, L4, and L5, achromatic lenses; B1 and B2, nonpolarization beam splitters; D1 and D2, dichroic filters; M, mirror.

Fig. 7
Fig. 7

Correction results without the correction of the dispersion: (a) wavefront, the unit is λ, and (b) image captured with a CCD camera.

Fig. 8
Fig. 8

Comparison of the corrected quasi-monochromatic image and the broadband image obtained with the conjugated blazed grating: (a) corrected quasi-monochromatic image, and (b) broadband image with eliminated dispersion.

Metrics