Abstract

We present a comprehensive experimental set of data on the dependence of the laser intensity on the angle of incidence to the target surface. The measurements have been performed in the laboratory for samples with a Nd:YAG laser and terrestrial laser scanner. The brightness scale data were also compared with data acquired by airborne laser scanning (ALS). The incidence angle effect is evident for all the targets. The effect is significant for incidence angles >20°, and stronger for bright targets. However, effects due to some of the other surface properties, such as roughness, were also detected. We also found a set of gravel samples for which the incidence angle effect was minor even up to 40°. The data provide an important reference for the interpretation and applications, e.g., full-waveform data processing of a laser scanner and ALS intensity calibration.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Ellis, P. Caillard, and A. Dogariu, “Off-diagonal Mueller matrix elements in backscattering from highly diffusive media,” J. Opt. Soc. Am. A 19, 43-48 (2002).
    [CrossRef]
  2. V. A. Ruiz-Cortés and J. C. Dainty, “Experimental light-scattering measurements for large-scale composite random rough surfaces,” J. Opt. Soc. Am. A 19, 2043-2052 (2002).
    [CrossRef]
  3. M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692-2695 (1985).
    [CrossRef] [PubMed]
  4. D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple scattering events of light in disordered media,” Phys. Rev. Lett. 74, 4193-4196 (1995).
    [CrossRef] [PubMed]
  5. G. D. Yoon, N. G. Roy, and R. C. Straight, “Coherent backscattering in biological media: measurement and estimation of optical properties,” Appl. Opt. 32, 580-585 (1993).
    [CrossRef] [PubMed]
  6. S. Kaasalainen, J. Peltoniemi, J. Näränen, J. Suomalainen, F. Stenman, and M. Kaasalainen, “Small-angle goniometry for backscattering measurements in the broadband spectrum,” Appl. Opt. 44, 1485-1490 (2005).
    [CrossRef] [PubMed]
  7. A. Kukko and J. Hyyppä, “Laser scanner simulator for system analysis and algorithm development: a case with forest measurements,” in Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007 Espoo, 12-14 September 2007, Finland; International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 3/W52, 234-240 (2007).
  8. B. Jutzi, J. Neulist, and U. Stilla, “High-resolution waveform acquisition and analysis for pulsed laser,” in High-Resolution Earth Imaging for Geospatial Information, C. Heipke, K. Jacobsen, and M. Gerke, eds., International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 1/W3, CD-ROM (2005).
  9. G. Videen, W. S. Bickel, V. J. Iafelice, and D. Abromson, “Experimental light-scattering Mueller matrix for a fiber on a reflecting optical surface as a function of incident angle,” J. Opt. Soc. Am. A 9, 312-315 (1992).
    [CrossRef]
  10. J. P. Landry, J. Gray, M. K. O'Toole, and X. D. Zhu, “Incidence-angle dependence of optical reflectivity difference from an ultrathin film on solid surface,” Opt. Lett. 31, 531-533(2006).
    [CrossRef] [PubMed]
  11. B. Jutzi, B. Eberle, and U. Stilla, “Estimation and measurement of backscattered signals from pulsed laser radar,” Proc. SPIE 4885, 256-267 (2003).
    [CrossRef]
  12. S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppä, and E. Ahokas, “Brightness measurements and calibration with airborne and terrestrial laser scanners,” IEEE Trans. Geosci. Remote Sens. 46, 528-534 (2008).
  13. S. Kaasalainen, J. Hyyppä, P. Litkey, H. Hyyppä, E. Ahokas, A. Kukko, and H. Kaartinen, “Radiometric calibration of ALS intensity,” in Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007 Espoo, 12-14 September 2007, Finland; International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 3/W52, 201-205 (2007).
  14. S. Kaasalainen, E. Ahokas, J. Hyyppä, and J. Suomalainen, “Study of surface brightness from backscattered laser intensity: calibration of laser data,” IEEE Trans. Geosci. Remote Sens. 2, 255-259 (2005).
    [CrossRef]
  15. E. Ahokas, S. Kaasalainen, J. Hyyppä, and J. Suomalainen, “Calibration of the Optech ALTM 3100 laser scanner intensity data using brightness targets,” presented at the ISPRS Commission I Symposium, 3-6 July 2006, Marne-la-Vallee, France; International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 1 (2006).
  16. D. S. Boyd and R. A. Hill, “Validation of airborne lidar intensity values from a forested landscape using hymap data: preliminary analyses,” in Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007 Espoo, 12-14 September 2007, Finland; International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 3/W52, 71-76 (2007).
  17. F. Coren and P. Sterzai, “Radiometric correction in laser scanning,” Int. J. Remote Sens. 27, 3097-3104 (2006).
    [CrossRef]
  18. B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: data and model-driven approaches,” ISPRS J. Photogramm. Remote Sens. 62 (6), 415-433 (2007).
  19. S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral lidar--measurement of spectral backscatter intensity with a supercontinuum laser source,” IEEE Trans. Geosci. Remote Sens. 4, 211-215 (2007).
    [CrossRef]
  20. P. Palojärvi, “Integrated electronic and optoelectronic circuits and devices for pulsed time-of-flight laser rangefinding,” Ph.D. dissertation (University of Oulu, 2003).
  21. K.-H. Thiel and A. Wehr, “Performance capabilities of laser scanners--an overview and measurement principle analysis,” International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36 Part 8/W2, 14-18 (2004).

2007 (1)

S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral lidar--measurement of spectral backscatter intensity with a supercontinuum laser source,” IEEE Trans. Geosci. Remote Sens. 4, 211-215 (2007).
[CrossRef]

2006 (2)

2005 (2)

S. Kaasalainen, J. Peltoniemi, J. Näränen, J. Suomalainen, F. Stenman, and M. Kaasalainen, “Small-angle goniometry for backscattering measurements in the broadband spectrum,” Appl. Opt. 44, 1485-1490 (2005).
[CrossRef] [PubMed]

S. Kaasalainen, E. Ahokas, J. Hyyppä, and J. Suomalainen, “Study of surface brightness from backscattered laser intensity: calibration of laser data,” IEEE Trans. Geosci. Remote Sens. 2, 255-259 (2005).
[CrossRef]

2004 (1)

K.-H. Thiel and A. Wehr, “Performance capabilities of laser scanners--an overview and measurement principle analysis,” International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36 Part 8/W2, 14-18 (2004).

2003 (1)

B. Jutzi, B. Eberle, and U. Stilla, “Estimation and measurement of backscattered signals from pulsed laser radar,” Proc. SPIE 4885, 256-267 (2003).
[CrossRef]

2002 (2)

1995 (1)

D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple scattering events of light in disordered media,” Phys. Rev. Lett. 74, 4193-4196 (1995).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

1985 (1)

M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692-2695 (1985).
[CrossRef] [PubMed]

Appl. Opt. (2)

IEEE Trans. Geosci. Remote Sens. (2)

S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral lidar--measurement of spectral backscatter intensity with a supercontinuum laser source,” IEEE Trans. Geosci. Remote Sens. 4, 211-215 (2007).
[CrossRef]

S. Kaasalainen, E. Ahokas, J. Hyyppä, and J. Suomalainen, “Study of surface brightness from backscattered laser intensity: calibration of laser data,” IEEE Trans. Geosci. Remote Sens. 2, 255-259 (2005).
[CrossRef]

Int. J. Remote Sens. (1)

F. Coren and P. Sterzai, “Radiometric correction in laser scanning,” Int. J. Remote Sens. 27, 3097-3104 (2006).
[CrossRef]

International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences (1)

K.-H. Thiel and A. Wehr, “Performance capabilities of laser scanners--an overview and measurement principle analysis,” International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36 Part 8/W2, 14-18 (2004).

J. Opt. Soc. Am. A (3)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692-2695 (1985).
[CrossRef] [PubMed]

D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple scattering events of light in disordered media,” Phys. Rev. Lett. 74, 4193-4196 (1995).
[CrossRef] [PubMed]

Proc. SPIE (1)

B. Jutzi, B. Eberle, and U. Stilla, “Estimation and measurement of backscattered signals from pulsed laser radar,” Proc. SPIE 4885, 256-267 (2003).
[CrossRef]

Other (8)

S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppä, and E. Ahokas, “Brightness measurements and calibration with airborne and terrestrial laser scanners,” IEEE Trans. Geosci. Remote Sens. 46, 528-534 (2008).

S. Kaasalainen, J. Hyyppä, P. Litkey, H. Hyyppä, E. Ahokas, A. Kukko, and H. Kaartinen, “Radiometric calibration of ALS intensity,” in Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007 Espoo, 12-14 September 2007, Finland; International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 3/W52, 201-205 (2007).

E. Ahokas, S. Kaasalainen, J. Hyyppä, and J. Suomalainen, “Calibration of the Optech ALTM 3100 laser scanner intensity data using brightness targets,” presented at the ISPRS Commission I Symposium, 3-6 July 2006, Marne-la-Vallee, France; International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 1 (2006).

D. S. Boyd and R. A. Hill, “Validation of airborne lidar intensity values from a forested landscape using hymap data: preliminary analyses,” in Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007 Espoo, 12-14 September 2007, Finland; International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 3/W52, 71-76 (2007).

A. Kukko and J. Hyyppä, “Laser scanner simulator for system analysis and algorithm development: a case with forest measurements,” in Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007 Espoo, 12-14 September 2007, Finland; International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 3/W52, 234-240 (2007).

B. Jutzi, J. Neulist, and U. Stilla, “High-resolution waveform acquisition and analysis for pulsed laser,” in High-Resolution Earth Imaging for Geospatial Information, C. Heipke, K. Jacobsen, and M. Gerke, eds., International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 1/W3, CD-ROM (2005).

B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: data and model-driven approaches,” ISPRS J. Photogramm. Remote Sens. 62 (6), 415-433 (2007).

P. Palojärvi, “Integrated electronic and optoelectronic circuits and devices for pulsed time-of-flight laser rangefinding,” Ph.D. dissertation (University of Oulu, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Laboratory laser (Nd:YAG) measurement arrangement. The sample surface was tilted using a goniometer (see also Fig. 2) to change the incidence angle.

Fig. 2
Fig. 2

(a) Horizontal laboratory arrangement for the FARO measurement of the incidence angle. (b) Goniometer used to deflect the target to gain the incidence angle range of 0 ° 70 ° . Image courtesy of Hannu Hyyppä.

Fig. 3
Fig. 3

Relative reflectances plotted as a function of incidence angle for the (a) gabro gravel, (b) LECA gravel, (c) crushed redbrick, (d) and (e) sandblasting sand of two different grain sizes ( 0.1 0.6 mm and 0.5 1.2 mm ). The left panels were measured with the 1064 nm laboratory instrument and the right panels with the FARO TLS. In the middle panels, the 3D structures of the samples were measured with a Konica–Minolta VI-9i laser digitizer. The sample images are in the same scale.

Fig. 4
Fig. 4

(a) Relative reflectances plotted as a function of the incidence angle for the 99% Spectralon reflectance target, and (b)–(e) PVC brightness calibration tarps 70%, 50%, 26%, and 8%. The left panels were measured with the 1064 nm laboratory instrument and the right panels with the FARO TLS.

Fig. 5
Fig. 5

Spectra (a) and (b) and relative reflectances as a function of incidence angle (c), (d), and (e) for the polystyrene sample. The spectra are plotted at (a)  0 ° and (b)  30 ° angles of incidence. The decrease in brightness is obvious while the shape of the spectrum does not change significantly. The incidence angle plots are presented at (c)  633 nm , (d)  785 nm , and (e)  900 nm .

Fig. 6
Fig. 6

Variation of brightness with the incidence angle plotted over 600 900 nm for (a) linden, (b) crushed redbrick, and (c)  0.1 0.6 mm sandblasting sand .

Fig. 7
Fig. 7

Comparison of the results measured with different sensors and light sources for (a) sandblasting sand ( 0.1 0.6 mm ), (b) crushed redbrick, and (c) 50% test target . From the left: FARO ( 785 nm ), SuperK (at 785 nm ), Nd:YAG ( 1064 nm ), and SuperK (at 900 nm ). There are brightness level variations (especially for the redbrick, whose spectrum shows a strong increase in brightness toward the near-infrared end of the spectrum), but the incidence angle effects are consistent between different measurements.

Tables (1)

Tables Icon

Table 1 Comparison of ALS (TopEye, 1064 nm ) and TLS (FARO, 785 nm ) Relative Reflectances for 50%, 20%, and 10% Test Targets a

Metrics