Abstract

An all-optical arithmetic unit with the help of terahertz-optical-asymmetric-demultiplexer (TOAD)-based tree architecture is proposed. We describe the all-optical arithmetic unit by using a set of all-optical multiplexer, all-optical full-adder, and optical switch. The all-optical arithmetic unit can be used to perform a fast central processor unit using optical hardware components. We have tried to exploit the advantages of both optical tree architecture and TOAD-based switch to design an integrated all-optical circuit that can perform binary addition, addition with carry, subtract with borrow, subtract (2’s complement), double, increment, decrement, and transfer operations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Scheider, Nonlinear Optics in Telecommunications (Springer-Verlag, 2004), Chaps. 6 and 12.
  2. C. S. Vikram and H. J. Caulfield, “Position-sensing detector for logical operations using incoherent light,” Opt. Eng. 44, 115201 (2005).
    [CrossRef]
  3. G. Li, F. Qian, H. Ruan, and L. Liu, “Compact parallel optical modified-signed-digit arithmetic-logic array processor with electron-trapping device,” Appl. Opt. 38, 5039-5045 (1999).
    [CrossRef]
  4. J. N. Roy and S. Mukhopadhyay, “A minimization scheme of optical space variant logic operation in a combinational architecture,” Opt.commun. 119, 499-504 (1995).
    [CrossRef]
  5. S. D. Smith, I. Janossy, H. A. Mackenzie, J. G. E. Reid, M. R. Taghizadeh, A. P. Tooley, and A. C. Walker, “Nonlinear optical circuits, logic gates for optical computers: the first digital optical circuits.,” Opt.Eng. 24, 569-573 (1985).
  6. K. R. Chowdhury and S. Mukhopadhyay, “Binary optical arithmetic operation scheme with tree architecture by proper accommodation of optical nonlinear materials,” Opt. Eng. 43, 132-136 (2004).
    [CrossRef]
  7. I. M. Khan, A. A. S. Awwal, and A. M. Chowdhury, “Characterization of intensity-coded multi-valued logic circuit implementation,” Opt. Eng. 38, 508-513 (1999).
    [CrossRef]
  8. M. A. Karim, A. A. S. Awwal, and A. K. Cheri, “Polarization encoded optical shadow casting logic unit,” Appl.Opt. 26, 2720-2726 (1987).
    [CrossRef] [PubMed]
  9. A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, “All-optical full-adder with bit differential delay,” Opt.Commun. 156, 22-26 (1998).
    [CrossRef]
  10. I. Glesk, R. J. Runser, and P. R. Prucnal, “New generation of devices for all-optical communication,” Acta Phys. Slov. 51, 151-162 (2001).
  11. N. Pahari, D. N. Das, and S. Mukhopadhyay, “All-optical method for the addition of binary data by nonlinear materials,” Appl.Opt. 43, 6147-6150 (2004).
    [CrossRef] [PubMed]
  12. A. K. Das and S. Mukhopadhyay, “An all-optical matrix multiplication scheme with non-linear material based switching system,” Chin. Opt. Lett. 3, 172-175 (2005).
  13. J. N. Roy, A. K. Maiti, and S. Mukhopadhyay, “Designing of an all-optical time division multiplexing scheme with the help of nonlinear material based tree-net architecture,” Chin. Opt. Lett. 4, 483-486 (2006).
  14. S. Mukhopadhyay, D. N. Das, P. P. Das, and P. Ghosh, “Implementation of all-optical digital matrix multiplication scheme with nonlinear material,” Opt. Eng. 40, 1998-2002 (2001).
    [CrossRef]
  15. A. D. McAulay, “Optical arithmetic unit using bit-WDM,” Opt. Laser Technol. 32, 421-427 (2000).
    [CrossRef]
  16. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787-789 (1993).
    [CrossRef]
  17. J. N. Roy and D. K. Gayen, “Integrated all-optical logic and arithmetic operations with the help of TOAD based interferometer device--alternative approach,” Appl. Opt. 46, 5304-5310 (2007).
    [CrossRef] [PubMed]
  18. A. I. Zavalin, J. Shamir, C. S. Vikram, and H. J. Caulfield, “Achieving stabilization in interferometric logic operations,” Appl. Opt. 45, 360-365 (2006).
    [CrossRef] [PubMed]
  19. N. J. Doran and D. Wood, “Nonlinear loop mirror,” Opt. Lett. 13, 56-58 (1988).
    [CrossRef] [PubMed]
  20. T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultra fast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett. 34, 1013-1014 (1998).
    [CrossRef]
  21. M. Jino and T. Matsumoto, “Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams,” Opt. Lett. 16, 220-222 (1991).
    [CrossRef]
  22. B. C. Wang, V. Baby, W. Tong, L. Xu, M. Friedman, R. J. Runser, I. Glesk, and P. R. Pruncnal, “A novel fast optical switch based on two cascaded terahertz asymmetric demultiplexers(TOAD),” Opt. Express 10, 15-23 (2002).
    [PubMed]
  23. H. Sotobayashi, W. Chujo, and K. Kitayama, “Highly spectral efficient optical code division multiplexing transmission system,” IEEE J. Sel. Top. Quantum Electron. 10, 250-258(2004).
    [CrossRef]
  24. G. P. Agrawal, Applications of Nonlinear Fibre Optics (Academic, 2001), Chap. 3.
  25. S. Mukhopadhyay, “An optical conversion system: From binary to decimal and decimal to binary,” Opt. Commun. 76, 309-312 (1990).
    [CrossRef]

2007

2006

2005

A. K. Das and S. Mukhopadhyay, “An all-optical matrix multiplication scheme with non-linear material based switching system,” Chin. Opt. Lett. 3, 172-175 (2005).

C. S. Vikram and H. J. Caulfield, “Position-sensing detector for logical operations using incoherent light,” Opt. Eng. 44, 115201 (2005).
[CrossRef]

2004

K. R. Chowdhury and S. Mukhopadhyay, “Binary optical arithmetic operation scheme with tree architecture by proper accommodation of optical nonlinear materials,” Opt. Eng. 43, 132-136 (2004).
[CrossRef]

N. Pahari, D. N. Das, and S. Mukhopadhyay, “All-optical method for the addition of binary data by nonlinear materials,” Appl.Opt. 43, 6147-6150 (2004).
[CrossRef] [PubMed]

H. Sotobayashi, W. Chujo, and K. Kitayama, “Highly spectral efficient optical code division multiplexing transmission system,” IEEE J. Sel. Top. Quantum Electron. 10, 250-258(2004).
[CrossRef]

2002

2001

S. Mukhopadhyay, D. N. Das, P. P. Das, and P. Ghosh, “Implementation of all-optical digital matrix multiplication scheme with nonlinear material,” Opt. Eng. 40, 1998-2002 (2001).
[CrossRef]

I. Glesk, R. J. Runser, and P. R. Prucnal, “New generation of devices for all-optical communication,” Acta Phys. Slov. 51, 151-162 (2001).

2000

A. D. McAulay, “Optical arithmetic unit using bit-WDM,” Opt. Laser Technol. 32, 421-427 (2000).
[CrossRef]

1999

I. M. Khan, A. A. S. Awwal, and A. M. Chowdhury, “Characterization of intensity-coded multi-valued logic circuit implementation,” Opt. Eng. 38, 508-513 (1999).
[CrossRef]

G. Li, F. Qian, H. Ruan, and L. Liu, “Compact parallel optical modified-signed-digit arithmetic-logic array processor with electron-trapping device,” Appl. Opt. 38, 5039-5045 (1999).
[CrossRef]

1998

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, “All-optical full-adder with bit differential delay,” Opt.Commun. 156, 22-26 (1998).
[CrossRef]

T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultra fast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett. 34, 1013-1014 (1998).
[CrossRef]

1995

J. N. Roy and S. Mukhopadhyay, “A minimization scheme of optical space variant logic operation in a combinational architecture,” Opt.commun. 119, 499-504 (1995).
[CrossRef]

1993

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787-789 (1993).
[CrossRef]

1991

1990

S. Mukhopadhyay, “An optical conversion system: From binary to decimal and decimal to binary,” Opt. Commun. 76, 309-312 (1990).
[CrossRef]

1988

1987

M. A. Karim, A. A. S. Awwal, and A. K. Cheri, “Polarization encoded optical shadow casting logic unit,” Appl.Opt. 26, 2720-2726 (1987).
[CrossRef] [PubMed]

1985

S. D. Smith, I. Janossy, H. A. Mackenzie, J. G. E. Reid, M. R. Taghizadeh, A. P. Tooley, and A. C. Walker, “Nonlinear optical circuits, logic gates for optical computers: the first digital optical circuits.,” Opt.Eng. 24, 569-573 (1985).

Acta Phys. Slov.

I. Glesk, R. J. Runser, and P. R. Prucnal, “New generation of devices for all-optical communication,” Acta Phys. Slov. 51, 151-162 (2001).

Appl. Opt.

Appl.Opt.

M. A. Karim, A. A. S. Awwal, and A. K. Cheri, “Polarization encoded optical shadow casting logic unit,” Appl.Opt. 26, 2720-2726 (1987).
[CrossRef] [PubMed]

N. Pahari, D. N. Das, and S. Mukhopadhyay, “All-optical method for the addition of binary data by nonlinear materials,” Appl.Opt. 43, 6147-6150 (2004).
[CrossRef] [PubMed]

Chin. Opt. Lett.

Electron. Lett.

T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultra fast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett. 34, 1013-1014 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Sotobayashi, W. Chujo, and K. Kitayama, “Highly spectral efficient optical code division multiplexing transmission system,” IEEE J. Sel. Top. Quantum Electron. 10, 250-258(2004).
[CrossRef]

IEEE Photon. Technol. Lett.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787-789 (1993).
[CrossRef]

Opt. Commun.

S. Mukhopadhyay, “An optical conversion system: From binary to decimal and decimal to binary,” Opt. Commun. 76, 309-312 (1990).
[CrossRef]

Opt. Eng.

S. Mukhopadhyay, D. N. Das, P. P. Das, and P. Ghosh, “Implementation of all-optical digital matrix multiplication scheme with nonlinear material,” Opt. Eng. 40, 1998-2002 (2001).
[CrossRef]

K. R. Chowdhury and S. Mukhopadhyay, “Binary optical arithmetic operation scheme with tree architecture by proper accommodation of optical nonlinear materials,” Opt. Eng. 43, 132-136 (2004).
[CrossRef]

I. M. Khan, A. A. S. Awwal, and A. M. Chowdhury, “Characterization of intensity-coded multi-valued logic circuit implementation,” Opt. Eng. 38, 508-513 (1999).
[CrossRef]

C. S. Vikram and H. J. Caulfield, “Position-sensing detector for logical operations using incoherent light,” Opt. Eng. 44, 115201 (2005).
[CrossRef]

Opt. Express

Opt. Laser Technol.

A. D. McAulay, “Optical arithmetic unit using bit-WDM,” Opt. Laser Technol. 32, 421-427 (2000).
[CrossRef]

Opt. Lett.

Opt.commun.

J. N. Roy and S. Mukhopadhyay, “A minimization scheme of optical space variant logic operation in a combinational architecture,” Opt.commun. 119, 499-504 (1995).
[CrossRef]

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, “All-optical full-adder with bit differential delay,” Opt.Commun. 156, 22-26 (1998).
[CrossRef]

Opt.Eng.

S. D. Smith, I. Janossy, H. A. Mackenzie, J. G. E. Reid, M. R. Taghizadeh, A. P. Tooley, and A. C. Walker, “Nonlinear optical circuits, logic gates for optical computers: the first digital optical circuits.,” Opt.Eng. 24, 569-573 (1985).

Other

T. Scheider, Nonlinear Optics in Telecommunications (Springer-Verlag, 2004), Chaps. 6 and 12.

G. P. Agrawal, Applications of Nonlinear Fibre Optics (Academic, 2001), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) TOAD-based optical switch. (b) Schematic of TOAD-based optical switch.

Fig. 2
Fig. 2

Optical tree architecture.

Fig. 3
Fig. 3

TOAD-based optical switch in tree architecture.

Fig. 4
Fig. 4

(a) Block diagram of full-adder. (b) Optical circuit for integrated all-optical full-adder scheme.

Fig. 5
Fig. 5

(a) Block diagram of 4 × 1 MUX. (b) Schematic of all-optical 4 × 1 MUX.

Fig. 6
Fig. 6

All-optical arithmetic unit.

Tables (5)

Tables Icon

Table 1 Truth table of Fig. 1

Tables Icon

Table 2 State of Different Output Terminals for Different Values of A and B in Tree Architecture

Tables Icon

Table 3 State of Different Output Terminal for Different Input Variables (Three Inputs) in Optical Tree Architecture

Tables Icon

Table 4 Truth Table for 4 × 1 MUX

Tables Icon

Table 5 Table for Different Arithmetic Operations

Metrics